Exploring the diagnostic and prognostic potential of LCFAs’ metabolic and biosynthetic pathways in glioblastoma multiforme using a bioinformatics approach
Abstract
Background and purpose: T-cell immunoglobulin and mucin-domain containing protein-3 (TIM-3)/ galectin-9 (Gal-9)/ autocrine loop in myeloid leukemia stem cells provokes inflammation through the NF-κB signaling pathway, which is influential in the expression of inflammatory factors. Interleukin1β (IL-1β) is a vital inflammatory cytokine that plays an important role in the proliferation and therapy resistance of acute myeloid leukemia (AML) cells. This study aimed to assess the effect of Gal-9 on IL-1β in the human leukemic U937 cell line.
Experimental approach: The U937 cells were cultured in different concentrations of Gal-9. Cell counting kit-8 was used to assess the effect of Gal-9 on human leukemic U937 cell proliferation. Also, its impact on the expression of TIM-3, Gal-9, IL-1β, IL-1βR, IL-1βRAP, and NLRP3 genes and IL-1β protein was studied by RT-PCR and ELISA, respectively. Moreover, the effect of Gal-9 on the NF-κB signaling pathway was evaluated by western blotting.
Findings/Results: U937 cells were expanded in the presence of Gal-9 in a concentration-dependent manner. Following treatment of U937 cells with Gal-9, the gene expression of Gal-9, IL-1B, IL-1BR, and IL-1BRAP were significantly upregulated compared to the control group. The IL-1β concentration increased following Gal-9 treatment in a concentration-dependent manner, while following time its level significantly decreased. Furthermore, Gal-9 slightly increased NF-κB phosphorylation.
Conclusion and implications: Gal-9 increased IL-1β level as a critical inflammatory cytokine in the proliferation and resistance of AML cells to therapy. According to this finding, targeting and blocking the TIM-3/Gal-9 autocrine loop can suppress IL-1β production and facilitate AML treatment.
Keywords
Full Text:
PDFReferences
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97-109.DOI: 10.1007/s00401-007-0243-4.
Urbańska K, Sokołowska J, Szmidt M, Sysa P. Glioblastoma multiforme-an overview. Contemp Oncol (Pozn). 2014;18(5):307-312.DOI: 10.5114/wo.2014.40559.
Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs. 2009;18(8):1061-1083.DOI: 10.1517/13543780903052764.
Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3-9.DOI: 10.22034/APJCP.2017.18.1.3.
Grossman SA, Batara JF. Current management of glioblastoma multiforme. Semin Oncol. 2004;31(5): 635-644.DOI: 10.1053/j.seminoncol.2004.07.005.
Batash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr Med Chem. 2017;24(27): 3002-3009.DOI: 10.2174/0929867324666170516123206.
Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509(7501):503-506.DOI: 10.1038/nature13241.
Dimas P, Montani L, Pereira JA, Moreno D, Trötzmüller M, Gerber J, et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. Elife. 2019;8:e44702,1-29.DOI: 10.7554/eLife.44702.
Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, Stoltz K, et al. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells. 2014;32(7):1746-1758.DOI: 10.1002/stem.1716.
Sperry J, Condro MC, Guo L, Braas D, Vanderveer-Harris N, Kim KK, et al. Glioblastoma utilizes fatty acids and ketone bodies for growth allowing progression during ketogenic diet therapy. Iscience. 2020;23(9):101453.DOI: 10.1016/j.isci.2020.101453.
Rustan AC, Drevon CA. Fatty acids: structures and properties. eLS. 2005;1-7.DOI: 10.1038/npg.els.0003894.
Dono A, Patrizz A, McCormack RM, Putluri N, Ganesh BP, Kaur B, et al. Glioma-induced alterations in fecal short-chain fatty acids and neurotransmitters. CNS Oncol. 2020;9(2):CNS57,1-14.DOI: 10.2217/cns-2020-0007.
Puca F, Yu F, Bartolacci C, Pettazzoni P, Carugo A, Huang-Hobbs E, et al. Medium-chain acyl-CoA dehydrogenase protects mitochondria from lipid peroxidation in glioblastoma. Cancer Discov. 2021;11(11):2904-2923.DOI: 10.1158/2159-8290.CD-20-1437.
Altinoz MA, Ozpinar A, Seyfried TN. Caprylic (octanoic) acid as a potential fatty acid chemotherapeutic for glioblastoma. Prostaglandins Leukot Essent Fatty Acids. 2020;159:102142.DOI: 10.1016/j.plefa.2020.102142.
Korbecki J, Simińska D, Jeżewski D, Kojder K, Tomasiak P, Tarnowski M, et al. Glioblastoma multiforme tumors in women have a lower expression of fatty acid elongases ELOVL2, ELOVL5, ELOVL6, and ELOVL7 than in men. Brain Sci. 2022;12(10):1356,1-22.DOI: 10.3390/brainsci12101356.
Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;2015(1):68-77.DOI: 10.5114/wo.2014.47136.
Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71-e,1-11.DOI: 10.1093/nar/gkv1507.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140.DOI: 10.1093/bioinformatics/btp616.
Liu S, Wang Z, Zhu R, Wang F, Cheng Y, Liu Y. Three differential expression analysis methods for RNA sequencing: limma, EdgeR, DESeq2. J Vis Exp. 2021(175):e62528.DOI: 10.3791/62528.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545-15550.DOI: 10.1073/pnas.0506580102.
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739-1740.DOI: 10.1093/bioinformatics/btr260.
Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291-303.DOI: 10.1007/978-1-60761-987-1_18.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504.DOI: 10.1101/gr.1239303.
Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015;127:67-72.DOI: 10.1016/j.biosystems.2014.11.005.
Pan RH, Zhang X, Chen ZP, Liu YJ. Arachidonate lipoxygenase 5 is a novel prognostic biomarker and correlates with high tumor immune infiltration in low-grade glioma. Front Genet. 2023;14:1027690, 1-17.DOI: 10.3389/fgene.2023.1027690.
Mehrabian M, Schulthess F, Nebohacova M, Castellani L, Zhou Z, Hartiala J, et al. Identification of ALOX5 as a gene regulating adiposity and pancreatic function. Diabetologia. 2008;51(6):978-988.DOI: 10.1007/s00125-008-1002-3.
Liu P, Liu Y, Chen C, Liu T, Niu T. Alox15b gene contributes to lymphoma tumorigenesis via PI3K/AKT/mTOR pathway activation and has a synergistic effect with Alox5 gene. Am J Hematol. 2018;132:4112.DOI: 10.1182/blood-2018-99-120130.
Wuest SJ, Horn T, Marti-Jaun J, Kühn H, Hersberger M. Association of polymorphisms in the ALOX15B gene with coronary artery disease. Clin Biochem. 2014;47(6):349-355.DOI: 10.1016/j.clinbiochem.2013.12.013.
Mashek DG, Li LO, Coleman RA. Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol. 2007;2(4):465-476.DOI: 10.2217/17460875.2.4.465.
Parsazad E, Esrafili F, Yazdani B, Ghafarzadeh S, Razmavar N, Sirous H. Integrative bioinformatics analysis of ACS enzymes as candidate prognostic and diagnostic biomarkers in colon adenocarcinoma. Res Pharm Sci. 2023;18(4):413-429.DOI: 10.4103/1735-5362.378088.
Honkakoski P, Negishi M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J. 2000;347(2):321-337.DOI: 10.1042/0264-6021:3470321.
Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer. 2009;9:187,1-17.DOI: 10.1186/1471-2407-9-187.
Houlston R. CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics. 2000;10(2):105-114.DOI: 10.1097/00008571-200003000-00002.
Eun HS, Cho SY, Lee BS, Seong IO, Kim KH. Profiling cytochrome P450 family 4 gene expression in human hepatocellular carcinoma. Mol Med Rep. 2018;18(6):4865-4876.DOI: 10.3892/mmr.2018.9526.
Alnabulsi A, Swan R, Cash B, Alnabulsi A, Murray GI. The differential expression of omega-3 and omega-6 fatty acid metabolising enzymes in colorectal cancer and its prognostic significance. Br J Cancer. 2017;116(12):1612-1620.DOI: 10.1038/bjc.2017.135.
Matsuda Y, Saoo K, Yamakawa K, Yokohira M, Suzuki S, Kuno T, et al. Overexpression of CYP2A6 in human colorectal tumors. Cancer Sci. 2007;98(10):1582-1585.DOI: 10.1111/j.1349-7006.2007.00572.x.
Tan W, Chen GF, Xing DY, Song CY, Kadlubar FF, Lin DX. Frequency of CYP2A6 gene deletion and its relation to risk of lung and esophageal cancer in the Chinese population. Int J Cancer. 2001;95(2):96-101.DOI: 10.1002/1097-0215(20010320)95:2<96::aid-ijc1017>3.0.co;2-2.
Feng H, Liu X. Interaction between ACOT7 and LncRNA NMRAL2P via methylation regulates gastric cancer progression. Yonsei Med J. 2020;61(6):471-481.DOI: 10.3349/ymj.2020.61.6.471.
Sun X, Zhang Q, Wang M, Yao L, Li X, Cao H, et al. Acyl-CoA thioesterase 7 is oncogenic in breast cancer by promoting oxidative phosphorylation via PGC1α. Genes Dis. 2023;11(5):101149.DOI: 10.1016/j.gendis.2023.101149.
Zheng C, Zhang G, Xie K, Diao Y, Luo C, Wang Y, et al. Pan-cancer analysis and experimental validation identify ACOT7 as a novel oncogene and potential therapeutic target in lung adenocarcinoma. Cancers (Basel). 2022;14(18):4522,1-19.DOI: 10.3390/cancers14184522
Zou R, Zheng M, Tan M, Xu H, Luan N, Zhu L. Decreased PTGDS expression predicting poor survival of endometrial cancer by integrating weighted gene co-expression network analysis and immunohistochemical validation. Cancer Manag Res. 2020;12:5057-5075.DOI: 10.2147/CMAR.S255753.
Jiang P, Cao Y, Gao F, Sun W, Liu J, Ma Z, et al. SNX10 and PTGDS are associated with the progression and prognosis of cervical squamous cell carcinoma. BMC Cancer. 2021;21(1):694,1-14.DOI: 10.1186/s12885-021-08212-w.
Wu W, Li H, Wang Z, Dai Z, Liang X, Luo P, et al. The tertiary lymphoid structure-related signature identified PTGDS in regulating PD-L1 and promoting the proliferation and migration of glioblastoma. Heliyon. 2024;10(1):e23915,1-18.DOI: 10.1016/j.heliyon.2023.e23915.
Luo C, Wang F, Qin S, Chen Q, Wang QK. Coronary artery disease susceptibility gene ADTRP regulates cell cycle progression, proliferation, and apoptosis by global gene expression regulation. Physiol Genomics. 2016;48(8):554-564.DOI: 10.1152/physiolgenomics.00028.2016.
Taïb B, Aboussalah AM, Moniruzzaman M, Chen S, Haughey NJ, Kim SF, et al. Lipid accumulation and oxidation in glioblastoma multiforme. Sci Rep. 2019;9(1):19593.DOI: 10.1038/s41598-019-55985-z.
Huang B, Bao J, Cao YR, Gao HF, Jin Y. Cytochrome P450 1A1 (CYP1A1) catalyzes lipid peroxidation of oleic acid-induced HepG2 cells. Biochemistry (Mosc). 2018;83(5):595-602.DOI: 10.1134/S0006297918050127.
Eccles JA, Baldwin WS. Detoxification cytochrome P450s (CYPs) in families 1-3 produce functional oxylipins from polyunsaturated fatty acids. Cells. 2022;12(1):82,1-30. DOI: 10.3390/cells12010082.
Lucas D, Goulitquer S, Marienhagen J, Fer M, Dreano Y, Schwaneberg U, et al. Stereoselective epoxidation of the last double bond of polyunsaturated fatty acids by human cytochromes P450. J Lipid Res. 2010;51(5):1125-1133. DOI: 10.1194/jlr.M003061.
Tan C, Liu L, Liu X, Qi L, Wang W, Zhao G, et al. Activation of PTGS2/NF-κB signaling pathway enhances radiation resistance of glioma. Cancer Med. 2019;8(3):1175-1185. DOI: 10.1002/cam4.1971.
Xu C, Zhao J, Song J, Xiao M, Cui X, Xin L, et al. lncRNA PRADX is a mesenchymal glioblastoma biomarker for cellular metabolism targeted therapy. Front Oncol. 2022;12:888922,1-14.DOI: 10.3389/fonc.2022.888922.
Cheng J, Fan YQ, Liu BH, Zhou H, Wang JM, Chen QX. ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol Rep. 2020;43(1): 147-158. DOI: 10.3892/or.2019.7419.
Rezvani Sichani A, Rezvani Sichani Z, Yazdani B, Azizmohammad Looha M, Sirous H. A bioinformatics approach of specificity protein transcription factors in head and neck squamous cell carcinoma. Res Pharm Sci. 2024;19(3):287-302. DOI: 10.4103/RPS.RPS_171_23.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.
...


