Expression of PPAR-alpha and gamma in breast cancer patients and their relationship with the expression of FASN, ACSL4, and ACLY genes
Abstract
Background and purpose: Peroxisome proliferator-activated receptors alpha and gamma (PPAR-α and PPAR-γ) are nuclear receptor proteins that play a crucial role in the regulation of cellular differentiation, development, metabolism, and tumorigenesis. Their expression levels have been implicated in the metabolic reprogramming of breast cancer cells, influencing their proliferation and survival. This study investigates the expression of PPAR-α and PPAR-γ in breast cancer and explores their relationship with key enzymes involved in fatty acid biosynthesis: fatty acid synthase (FASN), acyl-CoA synthetase long-chain family member (ACSL4), and ATP citrate lyase (ACLY).
Experimental approach: In this study, 28 pairs of fresh samples of breast cancer and adjacent non-cancerous tissue were analyzed to assess gene expression levels using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry staining.
Findings/Results: The expression of PPAR-α increased, while PPAR-γ decreased significantly in breast cancer tissues compared to adjacent normal tissues. The expression of PPAR-α was significantly associated with FASN mRNA expression. Additionally, a correlation was also observed between the expression levels of both PPAR-α and PPAR-γ with ACSL4 mRNA levels
Conclusion and implications: Given the obtained results, the involvement of PPARs in the regulation of lipid metabolism was substantiated. Moreover, the correlation of PPARs with ACSL4 highlights the possible role of PPAR-α and PPAR-γ in the regulation of tumor tissue ferroptosis and suggests that targeting these pathways could offer new therapeutic strategies for managing breast cancer. However, further studies are needed to understand the mechanism of action.
Keywords
Full Text:
PDFReferences
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49.DOI: 10.3322/caac.21820.
Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncology. 2017;3(4):524-548.DOI: 10.1001/jamaoncol.2016.5688.
Ravi S, Alencar Jr AM, Arakelyan J, Xu W, Stauber R, Wang CCI, et al. An update to hallmarks of cancer. Cureus. 2022;14(5):1-16.DOI: 10.7759/cureus.24803.
Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-314.DOI: 10.1126/science.123.3191.309.
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656-670.DOI: 10.1016/j.cell.2012.01.058.
Currie E, Schulze A, Zechner R, Walther TC, Farese RV. Cellular fatty acid metabolism and cancer. Cell metab. 2013;18(2):153-161.DOI: 10.1016/j.cmet.2013.05.017.
Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets. 2017;21(11):1001-1016.DOI: 10.1080/14728222.2017.1381087.
Wu Y, Hurren R, MacLean N, Gronda M, Jitkova Y, Sukhai MA, et al. Carnitine transporter CT2 (SLC22A16) is overexpressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells. Apoptosis. 2015;20(8):1099-1108.DOI: 10.1007/s10495-015-1137-x.
Migita T, Okabe S, Ikeda K, Igarashi S, Sugawara S, Tomida A, et al. Inhibition of ATP citrate lyase induces an anticancer effect via reactive oxygen species: AMPK as a predictive biomarker for therapeutic impact. Am J Pathol. 2013;182(5):1800-1810.DOI: 10.1016/j.ajpath.2013.01.048.
Rossi Sebastiano M, Konstantinidou G. Targeting long chain acyl-CoA synthetases for cancer therapy. Int J Mol Sci. 2019;20(15):3624,1-16.DOI: 10.3390/ijms20153624.
Wu X, Deng F, Li Y, Daniels G, Du X, Ren Q, et al. ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget. 2015;6(42):44849-44863.DOI: 10.18632/oncotarget.6438.
Parsazad E, Esrafili F, Yazdani B, Ghafarzadeh S, Razmavar N, Sirous H. Integrative bioinformatics analysis of ACS enzymes as candidate prognostic and diagnostic biomarkers in colon adenocarcinoma. Res Pharm Sci. 2023;18(4):413-429.DOI: 10.4103/1735-5362.378088.
Wahlström T, Henriksson MA. Impact of MYC in regulation of tumor cell metabolism. Biochim Biophys Acta. 2015;1849(5):563-569.DOI: 10.1016/j.bbagrm.2014.07.004.
Yang Y, Zhu T, Wang X, Xiong F, Hu Z, Qiao X, et al. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers. Cancers. 2022;14(23):5896,1-14.DOI: 10.3390/cancers14235896.
Quan J, Bode AM, Luo X. ACSL family: the regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol. 2021;909:174397,13-21.DOI: 10.1016/j.ejphar.2021.174397.
Li T, Li X, Meng H, Chen L, Meng F. ACSL1 affects triglyceride levels through the PPARγ pathway. Int J Med Sci. 2020;17(6):720-727.PMID: 32218693.
Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812(8):1007-1022.DOI: 10.1016/j.bbadis.2011.02.014.
Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10(4):355-361.DOI: 10.1038/nm1025.
Aagaard MM, Siersbæk R, Mandrup S. Molecular basis for gene-specific transactivation by nuclear receptors. Biochim Biophys Acta. 2011;1812(8):824-835.DOI: 10.1016/j.bbadis.2010.12.018.
La Cour Poulsen L, Siersbæk M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol. 2012:23(6):631-639.DOI: 10.1016/j.semcdb.2012.01.003.
Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338,1-34.DOI: 10.1016/j.metabol.2020.154338.
Shao X, Wang M, Wei X, Deng S, Fu N, Peng Q, et al. Peroxisome proliferator-activated receptor-γ: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther. 2016;11(3):282-289.DOI: 10.2174/1574888x10666150528144905.
Janani C, Kumari BR. PPAR gamma gene–a review. Diabetes Metab Syndr. 2015;9(1):46-50.DOI: 10.1016/j.dsx.2014.09.015.
Al-Ghadban S, Diaz ZT, Singer HJ, Mert KB, Bunnell BA. Increase in leptin and PPAR-γ gene expression in lipedema adipocytes differentiated in vitro from adipose-derived stem cells. Cells. 2020;9(2):430,1-13.DOI: 10.3390/cells9020430.
Porcuna J, Mínguez-Martínez J, Ricote M. The PPARα and PPARγ epigenetic landscape in cancer and immune and metabolic disorders. Int J Mol Sci. 2021;22(19):10573,1-25.DOI: 10.3390/ijms221910573.
Wagner N, Wagner KD. PPAR beta/delta and the hallmarks of cancer. Cells. 2020;9(5):1133,1-29.DOI: 10.3390/cells9051133.
Hartley A, Ahmad I. The role of PPARγ in prostate cancer development and progression. Br J Cancer. 2023;128(6):940-945.DOI: 10.1038/s41416-022-02096-8.
Tan Y, Wang M, Yang K, Chi T, Liao Z, Wei P. PPAR-α modulators as current and potential cancer treatments. Front Oncol. 2021;11:599995,1-15.DOI: 10.3389/fonc.2021.599995.
Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology. 2001;142(10):4195-4202.DOI: 10.1210/endo.142.10.8458.
Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol. 2023;14:1184794,1-21.DOI: 10.3389/fphar.2023.1184794.
Carvalho MDT, Alonso DP, Vendrame CMV, Costa DL, Costa CHN, Werneck GL, et al. Lipoprotein lipase and PPAR alpha gene polymorphisms, increased very-low-density lipoprotein levels, and decreased high-density lipoprotein levels as risk markers for the development of visceral leishmaniasis by Leishmania infantum. Mediators Inflamm. 2014;2014:1-10.DOI: 10.1155/2014/230129.
Knight BL, Hebbachi A, Hauton D, Brown AM, Wiggins D, Patel DD, et al. A role for PPARα in the control of SREBP activity and lipid synthesis in the liver. Biochem J. 2005;389(2):413-421.DOI: 10.1042/BJ20041896.
Dinarvand N, Khanahmad H, Hakimian SM, Sheikhi A, Rashidi B, Pourfarzam M. Evaluation of long-chain acyl-coenzyme A synthetase 4 (ACSL4) expression in human breast cancer. Res Pharm Sci. 2020; 15(1):48-56.DOI: 10.4103/1735-5362.278714.
Ramakers C, Ruijter JM, Deprez RHL, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci lett. 2003;339(1):62-66.DOI: 10.1016/s0304-3940(02)01423-4.
Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021;19: 4101-4109.DOI: 10.1016/j.csbj.2021.07.014.
Ma Y, Zha J, Yang X, Li Q, Zhang Q, Yin A, et al. Long-chain fatty acyl-CoA synthetase 1 promotes prostate cancer progression by elevation of lipogenesis and fatty acid beta-oxidation. Oncogene. 2021;40(10):1806-1820.DOI: 10.1038/s41388-021-01667-y.
Zhao B, Xin Z, Ren P, Wu H. The role of PPARs in breast cancer. Cells. 2022;12(1):130,1-33.DOI: 10.3390/cells12010130.
Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα. Int J Mol Sci. 2021;22(16):8969,1-31.DOI: 10.3390/ijms22168969.
Chandran K, Goswami S, Sharma-Walia N. Implications of a peroxisome proliferator-activated receptor alpha (PPARα) ligand clofibrate in breast cancer. Oncotarget. 2016;7(13):15577-15599.DOI: 10.18632/oncotarget.6402.
Qian Z, Chen L, Liu J, Jiang Y, Zhang Y. The emerging role of PPAR-alpha in breast cancer. Biomed Pharmacother. 2023;161:114420.DOI: 10.1016/j.biopha.2023.114420,1-14.
Tian H, Luo J, Shi H, Chen X, Wu J, Liang Y, et al. Role of peroxisome proliferator-activated receptor-α on the synthesis of monounsaturated fatty acids in goat mammary epithelial cells. J Anim Sci. 2020;98(3):1-10.DOI: 10.1093/jas/skaa062.
Comito G, Ippolito L, Chiarugi P, Cirri P. Nutritional exchanges within tumor microenvironment: impact for cancer aggressiveness. Front Oncol. 2020;10:396,1-13.DOI: 10.3389/fonc.2020.00396.
Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, et al. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol. 2021;14(1):1-19.DOI: 10.1186/s13045-021-01200-4.
Vanauberg D, Schulz C, Lefebvre T. Involvement of the pro-oncogenic enzyme fatty acid synthase in the hallmarks of cancer: a promising target in anti-cancer therapies. Oncogenesis. 2023;12(1):16,1-10.DOI: 10.1038/s41389-023-00460-8.
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, et al. Lipid metabolism and cancer. Life. 2022;12(6):784,1-34.DOI: 10.3390/life12060784.
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S, et al. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chin Med J. 2023;136(21): 2521-2537.DOI: 10.1097/CM9.0000000000002533.
Wang X, Rao J, Tan Z, Xun T, Zhao J, Yang X. Inflammatory signaling on cytochrome P450-mediated drug metabolism in hepatocytes. Front Pharmacol. 2022;13:1043836,1-15.DOI: 10.3389/fphar.2022.1043836.
Bartolacci C, Andreani C, El-Gammal Y, Scaglioni PP. Lipid metabolism regulates oxidative stress and ferroptosis in RAS-driven cancers: a perspective on cancer progression and therapy. Front Mol Biosci. 2021;8:706650,1-19.DOI: 10.3389/fmolb.2021.706650.
Mal S, Dwivedi AR, Kumar V, Kumar N, Kumar B, Kumar V. Role of peroxisome proliferator-activated receptor gamma (PPARγ) in different disease states :recent updates. Curr Med Chem. 2021;28(16): 3193-3215.DOI: 10.2174/0929867327666200716113136.
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, et al. PPAR-γ modulators as current and potential cancer treatments. Front Oncol. 2021;11:737776, 1-17.DOI: 10.3389/fonc.2021.737776.
Mrowka P, Glodkowska-Mrowka E. PPARγ agonists in combination cancer therapies. Curr Cancer Drug Targets. 2020;20(3):197-215.DOI: 10.2174/1568009619666191209102015.
Khasabova IA, Seybold VS, Simone DA. The role of PPARγ in chemotherapy-evoked pain. Neurosci Lett. 2021;753:135845,1-22.DOI: 10.1016/j.neulet.2021.135845.
Wu K, Hu Y, Yan K, Qi Y, Zhang C, Zhu D, et al. microRNA‐10b confers cisplatin resistance by activating AKT/mTOR/P70S6K signaling via targeting PPARγ in esophageal cancer. J Cell Physiol. 2020;235(2): 1247-1258.DOI: 10.1002/jcp.29040.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.
...


