Development and evaluation of gelatin/hyaluronic acid nanofibrous dressing loaded with silver nanoparticles and phenytoin for enhanced wound healing: an in-vitro and in-vivo study

Jaber Emami , Niloofar Mostolizadeh, Majid Tabbakhian, Parisa Heydari, Anousheh Zargar Kharazi, Mohsen Minaeiyan, Farshid Hasanzadeh, Mina Mirian, Ardeshir Talebi

Abstract


Background and purpose: Wound dressings are essential in managing chronic wounds like pressure ulcers, which increase healthcare costs and hospital stays. There is a rising demand for advanced dressings that effectively promote healing. This study developed electrospun gelatin-hyaluronic acid (Gel/HA) nanofibers loaded with silver nanoparticles (Ag NPs) and phenytoin to enhance wound healing.

Experimental approach: Ag NPs were synthesized via silver nitrate reduction using trisodium citrate and tannic acid, and characterized for size, zeta potential, PDI, UV-Vis absorption, and XRD patterns. Drug-free and drug-loaded Gel/HA nanofibers were fabricated and analyzed using FE-SEM, FTIR, DSC, XRD, swelling behavior, drug loading, and release profiles. In vitro antibacterial and in vivo wound healing studies were conducted.

Findings/Results: Optimized Ag NPs had a size of 41.96 ± 1.2 nm, zeta potential of −23.77 ± 1.31 mV, and PDI of 0.35 ± 0.02. The ideal nanofiber formulation (20 g Gel and 0.25 g HA/100 mL) showed drug loading efficiencies of 56.02 ± 1.8% (Ag NPs) and 61.02 ± 2.82% (phenytoin), with release times of 22.23 and                   28.53 h, respectively. The nanofibers demonstrated high swelling (822.2%) and strong antibacterial activity. In vivo studies revealed significantly faster wound closure, improved epithelialization, collagen deposition, and complete healing within 15 days. These effects reflect the synergy between Ag NPs’ antimicrobial and phenytoin’s regenerative properties.

Conclusion and implications: Gel/HA nanofibers loaded with Ag NPs and phenytoin show great promise as advanced wound dressings. Further studies in larger animal models and clinical trials are warranted.

 

 


Keywords


Gelatin; Hyaluronic acid; Nanofibers; Phenytoin; Silver nanoparticles; Wound healing.

Full Text:

PDF

References


Wiwatwongwana F, Surin P. In vitro degradation of gelatin/carboxymethylcellulose scaffolds for skin tissue regeneration. Chem Eng Trans. 2019;74:1555-1560.DOI: 10.3303/CET1974260.

You C, Li Q, Wang X, Wu P, Ho JK, Jin R, et al. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep. 2017;7(1):10489,1-11.DOI: 10.1038/s41598-017-10481-0.

Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J Drug Target. 2016;24(6):520-529.DOI: 10.3109/1061186X.2015.1095922.

Al-Musawi MH, Turki SH, Al-Naymi HAS, Al-salman SS, Boroujeni VV, Alizadeh M, et al. Localized delivery of healing stimulator medicines for enhanced wound Treatment. J Drug Deliv Sci Technol. 2024;101(Part A):106212.DOI: 10.1016/j.jddst.2024.106212.

Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: a review. Int J Biol Macromol. 2019;138:854-865.DOI: 10.1016/j.ijbiomac.2019.07.155.

Heydari P, Varshosaz J, Kharaziha M, Haghjooy Javanmard S. Antibacterial and pH-sensitive methacrylate poly-L-Arginine/poly (β-amino ester) polymer for soft tissue engineering. J Mater Sci Mater Med. 2023;34(4):16,1-15.DOI: 10.1007/s10856-023-06720-8.

Shafizadeh S, Heydari P, Zargar Kharazi A, Shariati L. Coaxial electrospun PGS/PCL and PGS/PGS-PCL nanofibrous membrane containing platelet-rich plasma for skin tissue engineering. J Biomater Sci Polym Ed. 2024;35(4):482-500.DOI: 10.1080/09205063.2023.2299073.

Huang TY, Wang GS, Tseng CC, Su WT. Epidermal cells differentiated from stem cells from human exfoliated deciduous teeth and seeded onto polyvinyl alcohol/silk fibroin nanofiber dressings accelerate wound repair. Mater Sci Eng C Mater Biol Appl. 2019;104:109986,1-11.DOI: 10.1016/j.msec.2019.109986.

Abid S, Hussain T, Nazir A, Zahir A, Ramakrishna S, Hameed M, et. al. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int J Biol Macromol. 2019;135:1222-1236.DOI: 10.1016/j.ijbiomac.2019.06.022.

Gruppuso M, Iorio F, Turco G, Marsich E, Porrelli D. Hyaluronic acid/lactose-modified chitosan electrospun wound dressings-crosslinking and stability criticalities. Carbohydr Polym. 2022;288:119375.DOI: 10.1016/j.carbpol.2022.119375.

Li S, Dong Q, Peng X, Chen Y, Yang H, Xu W, et al. Self-healing hyaluronic acid nanocomposite hydrogels with platelet-rich plasma impregnated for skin regeneration. ACS Nano. 2022;16(7):11346-11359.DOI: 10.1021/acsnano.2c05069.

Su S, Bedir T, Kalkandelen C, Başar AO, Şaşmazel HT, Ustundag CB, et al. Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin-based nanofibers for wound healing applications. Eur Polym J. 2021;142: 110158.DOI: 10.1016/j.eurpolymj.2020.110158

Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials (Basel). 2019;12(16):2540,1-16.DOI: 10.3390/ma12162540.

Echavarría JO, Vanegas NAG, Orozco CPO. Chitosan/carboxymethyl cellulose wound dressings supplemented with biologically synthesized silver nanoparticles from the ligninolytic fungus Anamorphous Bjerkandera sp. R1. Heliyon. 2022;8(9):e10258,1-11.DOI: 10.1016/j.heliyon.2022.e10258.

Ye H, Cheng J, Yu K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol. 2019;121:633-642.DOI: 10.1016/j.ijbiomac.2018.10.056.

Fatima M, Hanif S, Elsharkawy ER, Zafar F, Zulfiqar A, Khan MA, et al. Design and fabrication of machine learning trained silver nanoparticles-infused multi-walled carbon nanotube-based sensor for antiviral drug monitoring. Microchem J. 2024;203:110921.DOI: 10.1016/j.microc.2024.110921.

Li C, Liu Z, Liu S, Tiwari SK, Thummavichai K, Ola O, et al. Antibacterial properties and drug release study of cellulose acetate nanofibers containing ear-like Ag-NPs and Dimethyloxallyl Glycine/beta-cyclodextrin. Appl Surf Sci. 2022;590:153132.DOI: 10.1016/j.apsusc.2022.153132.

Ovais M, Ahmad I, Khalil AT, Mukherjee S, Javed R, Ayaz M, et al. Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects. Appl Microbiol Biotechnol. 2018;102(10):4305-4318.DOI: 10.1007/s00253-018-8939-z.

Samadi A, Azandeh S, Orazizadeh M, Bayati V, Rafienia M, Karami MA. Fabrication and characterisation of chitosan/polyvinyl alcohol-based transparent hydrogel films loaded with silver nanoparticles and sildenafil citrate for wound dressing applications. Mater Technol (N Y N Y). 2022;37(5):355-365.DOI: 10.1080/10667857.2020.1842151

Nqakala ZB, Sibuyi NRS, Fadaka AO, Meyer M, Onani MO, Madiehe AM. Advances in nanotechnology towards development of silver nanoparticle-based wound-healing agents. Int J Mol Sci. 2021;22(20):11272,1-26.DOI: 10.3390/ijms222011272.

Ahire JH, Wang Q, Rowley G, Chambrier I, Crack JC, Bao Y, et al. Polyurethane infused with heparin capped silver nanoparticles dressing for wound healing application: synthesis, characterization and antimicrobial studies. Int J Biol Macromol. 2024;282 (Pt 1):136557,1-14.DOI: 10.1016/j.ijbiomac.2024.136557.

Qadirifard MS, Qadirifard M, Tavakoli G, Mojeni FA, Mohagheghi SZ, Rafiei SKS, et al. Topical phenytoin for wound healing: a narrative review. Wound Pract Res. 2024;32(2):66-78.DOI: 10.33235/wpr.32.2.66-78.

Syed Ibrahim AM, Ramakrishnan R, Yasar M. A study of efficacy of topical phenytoin in the management of diabetic ulcer. IOSR J Dent Med Sci. 2017;16(8 Ver. VII):5-11.DOI: 10.9790/0853-1608070511.

Heydari P, Varshosaz J, Zargar Kharazi A, Karbasi S. Preparation and evaluation of poly glycerol sebacate/poly hydroxy butyrate core‐shell electrospun nanofibers with sequentially release of ciprofloxacin and simvastatin in wound dressings. Polym Adv Technol. 2018;29(6): 1795-1803.DOI:10.1002/pat.4286.

Heydari P, Zargar Kharazi A, Asgary S, Parham S. Comparing the wound healing effect of a controlled release wound dressing containing curcumin/ciprofloxacin and simvastatin/ciprofloxacin in a rat model: a preclinical study. J Biomed Mater Res A. 2022;110(2):341-352.DOI: 10.1002/jbm.a.37292.

Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(5):510-525.DOI: 10.1002/wnan.100.

Meng Q, Li Y, Wang Q, Wang Y, Li K, Chen S, et al. Recent advances of electrospun nanofiber-enhanced hydrogel composite scaffolds in tissue engineering. J Manuf Process. 2024;123:112-127.DOI:10.1016/j.jmapro.2024.05.085.

Wang Q, Zhang S, Jiang J, Chen S, Ramakrishna S, Zhao W, et al. Electrospun radially oriented berberine-PHBV nanofiber dressing patches for accelerating diabetic wound healing. Regen Biomater. 2024;11:rbae063,1-15.DOI: 10.1093/rb/rbae063.

Pris M. Influence of different parameters on wet synthesis of silver nanoparticles. Bachelor Thesis. University of Twente. 2014.

Rapuntean S, Balint R, Paltinean GA, Tomoaia G, Mocanu A, Racz CP, et al. Antibacterial activity of silver nanoparticles obtained by co-reduction with sodium citrate and tannic acid. Studia UBB Chemia. 2018:73-85.DOI: 10.24193/subbchem.2018.3.06.

Ebrahimi-Hosseinzadeh B, Pedram M, Hatamian-Zarmi A, Salahshour-Kordestani S, Rasti M, Mokhtari-Hosseini ZB, et al. In vivo evaluation of gelatin/hyaluronic acid nanofiber as Burn-wound healing and its comparison with ChitoHeal gel. Fibers Polym. 2016;17:820-826.DOI: 10.1007/s12221-016-6259-4.

Angarano M, Schulz S, Fabritius M, Vogt R, Steinberg T, Tomakidi P, et al. Layered gradient nonwovens of in situ crosslinked electrospun collagenous nanofibers used as modular scaffold systems for soft tissue regeneration. Adv Funct Mater. 2013;23:3277-3285.DOI: 10.1002/adfm.201202816.

Anzar S, Hanif S, Shaaban IA, Raza A, Khan MA, Naz A, et al. Development of metal oxide nanocomposite-coated electrospun nanofibers for highly sensitive xanthine monitoring. Microchem J. 2024;207:112001.DOI: 10.1016/j.microc.2024.112001.

Zargar Kharazi A, Ghebleh A, Shariati L. Fabrication of a tri-layer scaffold with dual release of heparin and PRP for tissue engineering of small‐diameter blood vessels. Int J Polym Mater Polym Biomater. 2024;73:1374-1385.DOI: 10.1080/00914037.2023.2289537.

Azadani RN, Karbasi S, Poursamar A. Chitosan/MWCNTs nanocomposite coating on 3D printed scaffold of poly 3-hydroxybutyrate/magnetic mesoporous bioactive glass: A new approach for bone regeneration. Int J Biol Macromol. 2024;260(Pt 1):129407. DOI: 10.1016/j.ijbiomac.2024.129407.

Zienkiewicz-Strzałka M, Deryło-Marczewska A, Skorik YA, Petrova VA, Choma A, Komaniecka I. Silver nanoparticles on chitosan/silica nanofibers: characterization and antibacterial activity. Int J Mol Sci. 2019;21(1):166. DOI: 10.3390/ijms21010166.

Nair SC, Vinayan KP, Mangalathillam S. Nose to brain delivery of phenytoin sodium loaded nano lipid carriers: formulation, drug release, permeation and in vivo pharmacokinetic studies. Pharmaceutics.. 2021;13(10):1640. DOI: 10.3390/pharmaceutics13101640.

Hosseini SMR, Heydari P, Namnabat M, Azadani RN, Gharibdousti FA, Rizi EM, et al. Carboxymethyl cellulose/sodium alginate hydrogel with anti-inflammatory capabilities for accelerated wound healing; in vitro and in vivo study. Eur J Pharmacol. 2024;176671.DOI: 10.1016/j.ejphar.2024.176671.

Allend SO, Garcia MO, da Cunha KF, de Albernaz DTF, da Silva ME, Ishikame RY, et al. Biogenic silver nanoparticle (Bio‐AgNP) has an antibacterial effect against carbapenem‐resistant acinetobacter baumannii with synergism and additivity when combined with polymyxin B. J Appl Microbiol. 2022;132(2):1036-1047. DOI: 10.1111/jam.15297

Dubey P, Bhushan B, Sachdev A, Matai I, Uday Kumar S, Gopinath P. Silver‐nanoparticle‐incorporated composite nanofibers for potential wound‐dressing applications. J Appl Polym Sci. 2015;132:42473,1-12.DOI: 10.1002/app.42473.

Almajhdi FN, Fouad H, Khalil KA, Awad HM, Mohamed SHS, Elsarnagawy T, et al. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci Mater Med. 2014;25:1045-1053.DOI: 10.1007/s10856-013-5131-y.

Jayaramudu T, Raghavendra GM, Varaprasad K, Reddy GVS, Reddy AB, Sudhakar K, et al. Preparation and characterization of poly (ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process. J Appl Polym Sci. 2016;133:43027,1-8.DOI: 10.1002/APP.43027.

Ehterami A, Salehi M, Farzamfar S, Vaez A, Samadian H, Sahrapeyma S, et al. In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int J Biol Macromol. 2018;117:601-609. DOI: 10.1016/j.ijbiomac.2018.05.184.

National Institutes of Health. Public health service policy on humane care and use of laboratory animals. Maryland National Institutes Heal Bethesda. 2015,1-28.

Available at: https://olaw.nih.gov/sites/default/files/PHSPolicyLabAnimals.pdf.

Derkach SR, Voron’ko NG, Sokolan NI, Kolotova DS, Kuchina YA. Interactions between gelatin and sodium alginate: UV and FTIR studies. J Dispers Sci Technol. 2020;41(5):690-698.DOI: 10.1080/01932691.2019.1611437.

Nguyen TH, Lee BT. Fabrication and characterization of cross-linked gelatin electro-spun nano-fibers. J Biomed Sci Eng. 2010;3:1117,1-8.DOI: 10.4236/jbise.2010.312145.

Ranoszek-Soliwoda K, Tomaszewska E, Socha E, Krzyczmonik P, Ignaczak A, Orlowski P, et al. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J Nanopart Res. 2017;19:273,1-15.DOI: 10.1007/s11051-017-3973-9.

Dharani S, Rahman Z, Ali SFB, Afrooz H, Khan MA. Quantitative estimation of phenytoin sodium disproportionation in the formulations using vibration spectroscopies and multivariate methodologies. Int J Pharm. 2018;539(1-2):65-74. DOI: 10.1016/j.ijpharm.2018.01.005.

Singh V, Shrivastava A, Wahi N. Biosynthesis of silver nanoparticles by plants' crude extracts and their characterization using UV, XRD, TEM and EDX. African J Biotechnol. 2015;14(33):2554-2567.DOI: 10.5897/AJB2015.14692.

Alemdar N. Fabrication of a novel bone ash-reinforced gelatin/alginate/hyaluronic acid composite film for controlled drug delivery. Carbohydr Polym. 2016;151:1019-1026.DOI: 10.1016/j.carbpol.2016.06.033.

Lee SJ, Heo DN, Moon JH, Ko WK, Lee JB, Bae MS, et al. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym. 2014;111:530-537.DOI: 10.1016/j.carbpol.2014.04.026.

Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, et al. Synthesis, characterization and biomedical application of silver nanoparticles. Materials (Basel). 2022;15:427,1-43.DOI: 10.3390/ma15020427.

Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ. A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plant metabolites and applications. Int J Environ Res Public Health. 2022;19(2):674,1-17. DOI: 10.3390/ijerph19020674.

Gangwar C, Yaseen B, Kumar I, Singh NK, Naik RM. Growth kinetic study of tannic acid mediated monodispersed silver nanoparticles synthesized by chemical reduction method and its characterization. ACS Omega. 2021;6(34):22344-22356. DOI: 10.1021/acsomega.1c03100.

Gangwar C, Yaseen B, Nayak R, Praveen S, Singh NK, Sarkar J, et al. Silver nanoparticles fabricated by tannic acid for their antimicrobial and anticancerous activity. Inorg Chem Commun. 2022;141:109532.DOI: 10.1016/j.inoche.2022.109532.

Lian Y, Yuan L, Ji L, Zhang K. Gelatin/hyaluronic acid nanofibrous scaffolds: biomimetics of extracellular matrix. Acta Biochim Biophys Sin. 2013;45:700-703.DOI: 10.1093/abbs/gmt032.

Çallioğlu FC. The effect of glyoxal cross-linker and NaCl salt addition on the roller electrospinning of poly (vinyl alcohol) nanofibers. Tekstil ve Konfeksiyon. 2014;24:15-20.

Lu Z, Xiao J, Wang Y, Meng M. In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application. J Colloid Interface Sci. 2015;452:8-14.DOI: 10.1016/j.jcis.2015.04.015.

Tayebi-Khorrami V, Rahmanian-Devin P, Fadaei MR, Movaffagh J, Askari VR. Advanced applications of smart electrospun nanofibers in cancer therapy: With insight into material capabilities and electrospinning parameters. Int J Pharm X. 2024;8:100265. DOI: 10.1016/j.ijpx.2024.100265.

Cardoso VS, Quelemes PV, Amorin A, Primo FL, Gobo GG, Tedesco AC, et al. Collagen-based silver nanoparticles for biological applications: synthesis and characterization. J Nanobiotechnology. 2014:12:36. DOI: 10.1186/s12951-014-0036-6.

R. Nirmala, K.S. Jeon, R. Navamathavan, M. Park, H.Y. Kim, S.-J. Park, Enhanced electrical properties of electrospun nylon66 nanofibers containing carbon nanotube fillers and Ag nanoparticles. Fibers Polym. 2014;15(5):918-923.DOI: 10.1007/s12221-014-0918-0.

Dong R, Guo B. Smart wound dressings for wound healing. Nano Today. 2021;41:101290.DOI: 10.1016/j.nantod.2021.101290.

Rybka M, Mazurek L, Konop M. Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing-from experimental studies to clinical practice. Life (Basel). 2022;13(1):69,1-20. DOI: 10.3390/life13010069.

Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharmaceutics. 2018;11(1):5,1-30. DOI: 10.3390/pharmaceutics11010005.

Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An up‐to‐date review on alginate nanoparticles and nanofibers for biomedical and pharmaceutical applications. Adv Mater Interfaces. 2021;8:2100809,1-27.DOI: 10.1002/admi.202100809.

Casey-Power S, Ryan R, Behl G, McLoughlin P, Byrne ME, Fitzhenry L. Hyaluronic acid: its versatile use in ocular drug delivery with a specific focus on hyaluronic acid-based polyelectrolyte complexes. Pharmaceutics. 2022;14(7):1479,1-40. DOI: 10.3390/pharmaceutics14071479.

Gutschmidt D, Hazra RS, Zhou X, Xu X, Sabzi M, Jiang L. Electrospun, sepiolite-loaded poly (vinyl alcohol)/soy protein isolate nanofibers: Preparation, characterization, and their drug release behavior. Int J Pharm. 2021;594:120172.DOI: 10.1016/j.ijpharm.2020.120172.

Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022;8(1):e08674,1-16.DOI: 10.1016/j.heliyon.2021.e08674.

Mojahedi M, Heydari P, Kharazi AZ. Preparation and characterization of an antibacterial CMC/PCL hydrogel films containing CIP/Cur: in vitro and in vivo evaluation of wound healing activity. Int J Biol Macromol. 2024;282(Pt 1):136570. DOI: 10.1016/j.ijbiomac.2024.136570.

Wang L, Liu L, Liu Y, Wang F, Zhou X. Antimicrobial performance of novel glutathione-conjugated silver nanoclusters (GSH@ AgNCs) against Escherichia coli and Staphylococcus aureus by membrane-damage and biofilm-inhibition mechanisms. Food Res Int. 2022;160:111680. DOI: 10.1016/j.foodres.2022.111680.

Singh M, Mallick AK, Banerjee M, Kumar R. Loss of outer membrane integrity in Gram-negative bacteria by silver nanoparticles loaded with Camellia sinensis leaf phytochemicals: plausible mechanism of bacterial cell disintegration. Bull Mater Sci. 2016;39(7):1871-1878.DOI: 10.1007/s12034-016-1317-5.

Ghaseminezhad SM, Shojaosadati SA, Meyer RL. Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro chronic wound model. Colloids Surf B Biointerfaces. 2018;163:192-200.DOI: 10.1016/j.colsurfb.2017.12.035

Ahmed B, Hashmi A, Khan MS, Musarrat J. ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Adv Powder Technol. 2018;29(7):1601-1616.DOI: 10.1016/j.apt.2018.03.025.

Durairaj S, Sridhar D, Ströhle G, Li H, Chen A. Bactericidal effect and cytotoxicity of graphene oxide/silver nanocomposites. ACS Appl Mater Interfaces. 2024;16(15):18300-18310.DOI: 10.1021/acsami.3c15798.

Fattahi N, Abdolahi A, Vahabzadeh Z, Nikkhoo B, Manoochehri F, Goudarzzadeh S, et al. Topical phenytoin administration accelerates the healing of acetic acid-induced colitis in rats: evaluation of transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor. Inflammopharmacology. 2022;30(1):283-290. DOI: 10.1007/s10787-021-00885-w.

Zhang Y, Kang J, Chen X, Zhang W, Zhang X, Yu W, et al. Ag nanocomposite hydrogels with immune and regenerative microenvironment regulation promote scarless healing of infected wounds. J Nanobiotechnology. 2023;21(1):435,1-17. DOI: 10.1186/s12951-023-02209-2.

El-Aassar MR, Ibrahim OM, Fouda MMG, El-Beheri NG, Agwa MM. Wound healing of nanofiber comprising polygalacturonic/hyaluronic acid embedded silver nanoparticles: in-vitro and in-vivo studies. Carbohydr Polym. 2020;238:116175,1-11. DOI: 10.1016/j.carbpol.2020.116175.

Hussein MAM, Guler E, Rayaman E, Cam ME, Sahin A, Grinholc M, et al. Dual-drug delivery of Ag-chitosan nanoparticles and phenytoin via core-shell PVA/PCL electrospun nanofibers. Carbohydr Polym. 2021;270:118373. DOI: 10.1016/j.carbpol.2021.118373.

Khan MI, Paul P, Behera SK, Jena B, Tripathy SK, Lundborg CS, et al. To decipher the antibacterial mechanism and promotion of wound healing activity by hydrogels embedded with biogenic Ag@ZnO core-shell nanocomposites. Chem Eng J. 2021;417;128025.DOI: 10.1016/j.cej.2020.128025.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.