Methamphetamine exposure during gestation and lactation periods impairs the learning and memory of offspring mice, which is reversed by melatonin: the role of oxidative stress and acetylcholinesterase
Abstract
Background and purpose: Melatonin is a product of the pineal gland, which regulates the circadian cycle. Neurotoxicity is the most important side effect of methamphetamine (Met) abuse during pregnancy. This study aimed to explore the effect of Met exposure during gestation and lactation periods on the learning and memory of offspring mice. The protective effect of melatonin and the role of oxidative stress and acetylcholinesterase were also investigated.
Experimental approach: The pregnant mice were randomly divided into 2 groups. Saline or Met (5 mg/kg) was injected daily during pregnancy and lactation. After the lactation period, the offspring mice of each group were divided into 2 subgroups, and saline or melatonin (10 mg/kg) was orally (gavage) administered to the offspring mice from the post-delivery (PD) day 21 up to PD Day 60. The offspring mice were examined in the passive avoidance (PA) test. Finally, oxidative stress markers and acetylcholinesterase (AchE) activity were measured in the brains.
Findings/Results: As a result, Met decreased delay and light time while increasing the frequency of entry and time in the dark region of PA. However, melatonin alleviated the impairing effect of Met on PA performance. Meanwhile, the administration of Met increased malondialdehyde while decreasing superoxide dismutase and thiol content. Furthermore, AchE activity was significantly increased in Met-treated mice. Melatonin reversed the levels of antioxidants, lipid peroxidation, and AchE activity in the brain.
Conclusion and implications: Together, these results suggested that melatonin may be a potential therapeutic agent for alleviating Met-induced memory impairment by restoring redox hemostasis and AchE.
Keywords
Full Text:
PDFReferences
Doi M, Usui N, Shimada S. Prenatal environment and neurodevelopmental disorders. Front Endocrinol. 2022;13:860110,1-6.DOI: 10.3389/fendo.2022.860110.
Kish SJ, Boileau I, Callaghan RC, Tong J. Brain dopamine neurone ‘damage’: methamphetamine users vs. Parkinson's disease-a critical assessment of the evidence. Eur J Neurosci. 2017;45(1):58-66.DOI: 10.1111/ejn.13363.
Prakash MD, Tangalakis K, Antonipillai J, Stojanovska L, Nurgali K, Apostolopoulos V. Methamphetamine: effects on the brain, gut and immune system. Pharmacol Res. 2017;120:60-67.DOI: 10.1016/j.phrs.2017.03.009.
Limanaqi F, Gambardella S, Biagioni F, Busceti CL, Fornai F. Epigenetic effects induced by methamphetamine and methamphetamine-dependent oxidative stress. Oxid Med Cell Longev. 2018;2018:4982453,1-28.DOI: 10.1155/2018/4982453.
Baei F, Rajabzadeh A, Bagheri J, Jalayeri Z, Ebrahimzadeh-Bideskan A. Effect of methamphetamine exposure during pregnancy and lactation on polysialic acid-neural cell adhesion molecule expression in rat’s offspring hippocampus. Metab Brain Dis. 2017;32(4):991-1002.DOI: 10.1007/s11011-017-9973-8.
Roohbakhsh A, Moshiri M, Salehi Kakhki A, Iranshahy M, Amin F, Etemad L. Thymoquinone abrogates methamphetamine-induced striatal neurotoxicity and hyperlocomotor activity in mice. Res Pharm Sci. 2021;16(4):391-399.DOI: 10.4103/1735-5362.319577.
Zhang W, Zhou J, Su H, Zhang X, Song W, Wang Z, et al. Repeated methamphetamine exposure decreases plasma brain-derived neurotrophic factor levels in rhesus monkeys. Gen Psychiatr. 2023;36(5):e101127,1-7.DOI: 10.1136/gpsych-2023-101127.
Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. Brain Res Rev. 2009;60(2):379-407.DOI: 10.1016/j.brainresrev.2009.03.002.
Schröder N, O'Dell SJ, Marshall JF. Neurotoxic methamphetamine regimen severely impairs recognition memory in rats. Synapse. 2003;49(2):89-96.DOI: 10.1002/syn.10210.
Marshall JF, O’Dell SJ. Methamphetamine influences on brain and behavior: unsafe at any speed? Trends Neurosci. 2012;35(9):536-545.DOI: 10.1016/j.tins.2012.05.006.
Nicola SM, Surmeier DJ, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 2000;23:185-215.DOI: 10.1146/annurev.neuro.23.1.185.
Moszczynska A, Callan SP. Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: implications for treatment. J Pharmacol Exp Ther. 2017;362(3):474-488.DOI: 10.1124/jpet.116.238501.
Liou CM, Tsai SC, Kuo CH, Williams T, Ting H, Lee SD. Chronic methamphetamine exposure induces cardiac fas-dependent and mitochondria-dependent apoptosis. Cardiovasc Toxicol. 2014;14(2):134-144.DOI: 10.1007/s12012-013-9237-8.
Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol. 2009:88:101-119.DOI: 10.1016/S0074-7742(09)88005-7.
Dong N, Zhu J, Han W, Wang S, Yan Z, Ma D, et al. Maternal methamphetamine exposure causes cognitive impairment and alteration of neurodevelopment-related genes in adult offspring mice. Neuropharmacology. 2018:140:25-34.DOI: 10.1016/j.neuropharm.2018.07.024.
Jalayeri-Darbandi Z, Rajabzadeh A, Hosseini M, Beheshti F, Ebrahimzadeh-Bideskan A. The effect of methamphetamine exposure during pregnancy and lactation on hippocampal doublecortin expression, learning and memory of rat offspring. Anat Sci Int. 2018;93(3):351-363.DOI: 10.1007/s12565-017-0419-5.
Zare N, Maghsoudi N, Mirbehbahani SH, Foolad F, Khakpour S, Mansouri Z, et al. Prenatal methamphetamine hydrochloride exposure leads to signal transduction alteration and cell death in the prefrontal cortex and amygdala of male and female rats' offspring. J Mol Neurosci. 2022;72(11):2233-2241.DOI: 10.1007/s12031-022-02062-2.
Siegel JA, Park BS, Raber J. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice. J Neurochem. 2011;119(1):89-99.DOI: 10.1111/j.1471-4159.2011.07418.x.
Siegel JA, Craytor MJ, Raber J. Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice. Behav Pharmacol. 2010;21(7):602-614.DOI: 10.1097/FBP.0b013e32833e7e44.
Hondebrink L, Meulenbelt J, Rietjens SJ, Meijer M, Westerink RH. Methamphetamine, amphetamine, MDMA ('ecstasy'), MDA and mCPP modulate electrical and cholinergic input in PC12 cells. Neurotoxicology. 2012;33(2):255-260.DOI: 10.1016/j.neuro.2011.09.003.
Hardeland R, Pandi-Perumal S, Cardinali DP. Melatonin. Int J Biochem Cell Biol. 2006;38(3):313-316.DOI: 10.1016/j.biocel.2005.08.020.
Karvan S, Sadeghi A, Farrokhi P, Nekouee A, Sharifi M, Moghaddas A. Melatonin in the prevention of cisplatin-induced acute nephrotoxicity: a randomized, controlled clinical trial. Res Pharm Sci. 2022;17(2):176-188.DOI: 10.4103/1735-5362.335176.
Mirhoseini M, Rezanejad Gatabi Z, Saeedi M, Morteza-Semnani K, Talebpour Amiri F, Kelidari HR, et al. Protective effects of melatonin solid lipid nanoparticles on testis histology after testicular trauma in rats. Res Pharm Sci. 2019;14(3):201-208.DOI: 10.4103/1735-5362.258486.
Ataei N, Aghaei M, Panjehpour M. The protective role of melatonin in cadmium-induced proliferation of ovarian cancer cells. Res Pharm Sci. 2018; 13(2):159-167.DOI: 10.4103/1735-5362.223801.
Wongprayoon P, Govitrapong P. Melatonin attenuates methamphetamine-induced neurotoxicity. Curr Pharm Des. 2016;22(8):1022-1032.DOI: 10.2174/1381612822666151214125657.
Sumsuzzman DM, Choi J, Jin Y, Hong Y. Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer's disease and insomnia: a systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2021:127:459-473.DOI: 10.1016/j.neubiorev.2021.04.034.
Caruso GI, Spampinato SF, Costantino G, Merlo S, Sortino MA. SIRT1-dependent upregulation of BDNF in human microglia challenged with Aβ: an early but transient response rescued by melatonin. Biomedicines. 2021;9(5):466,1-15.DOI: 10.3390/biomedicines9050466.
Galano A, Tan D-X, Reiter RJ. Melatonin: a versatile protector against oxidative DNA damage. Molecules. 2018;23(3):530,1-36.DOI: 10.3390/molecules23030530.
Tyagi E, Agrawal R, Nath C, Shukla R. Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol. 2010; 640(1-3):206-210.DOI: 10.1016/j.ejphar.2010.04.041.
Espino J, Bejarano I, Redondo PC, Rosado JA, Barriga C, Reiter RJ, et al. Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: evidence for the involvement of mitochondria and Bax activation. J Membr Biol. 2010;233(1-3):105-118.DOI: 10.1007/s00232-010-9230-0.
Sundram S, Malviya R, Awasthi R. Genetic causes of Alzheimer’s disease and the neuroprotective role of melatonin in its management. CNS Neurol Disord Drug Targets. 2022;22(9):1302-1312.DOI: 10.2174/1871527321666220901125730.
Zhai Z, Xie D, Qin T, Zhong Y, Xu Y, Sun T. Effect and mechanism of exogenous melatonin on cognitive deficits in animal models of Alzheimer’s disease: a systematic review and meta-analysis. Neuroscience. 2022:505:91-110.DOI: 10.1016/j.neuroscience.2022.09.012.
Saleh DO, Jaleel GAA, Al-Awdan SW, Hassan A, Asaad GF. Melatonin suppresses the brain injury after cerebral ischemia/reperfusion in hyperglycaemic rats. Res Pharm Sci. 2020;15(5):418-428.DOI: 10.4103/1735-5362.297844.
Lwin T, Yang JL, Ngampramuan S, Viwatpinyo K, Chancharoen P, Veschsanit N, et al. Melatonin ameliorates methamphetamine-induced cognitive impairments by inhibiting neuroinflammation via suppression of the TLR4/MyD88/NFκB signaling pathway in the mouse hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110109,1-13.DOI: 10.1016/j.pnpbp.2020.110109.
Kioumarsi Darbandi Z, Amirahmadi S, Goudarzi I, Hosseini M, Rajabian A. Folic acid improved memory and learning function in a rat model of neuroinflammation induced by lipopolysaccharide. Inflammopharmacology. 2024;32(2):1401-1411.DOI: 10.1007/s10787-023-01314-w.
Rastegar-Moghaddam SH, Akbarian M, Rajabian A, Alipour F, Ebrahimzadeh Bideskan A, Hosseini M. Vitamin D alleviates hypothyroidism associated liver dysfunction: histological and biochemical evidence. Heliyon. 2023;9(8):e18860,1-11.DOI: 10.1016/j.heliyon.2023.e18860.
Salmani H, Hosseini M, Beheshti F, Baghcheghi Y, Sadeghnia HR, Soukhtanloo M, et al. Angiotensin receptor blocker, losartan ameliorates neuroinflammation and behavioral consequences of lipopolysaccharide injection. Life Sci. 2018:203:161-170.DOI: 10.1016/j.lfs.2018.04.033.
North A, Swant J, Salvatore MF, Gamble‐George J, Prins P, Butler B, et al. Chronic methamphetamine exposure produces a delayed, long‐lasting memory deficit. Synapse. 2013;67(5):245-257.DOI: 10.1002/syn.21635.
Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: an overview of animal and human investigations. Neurosci Biobehav Rev. 2021;131:541-559.DOI: 10.1016/j.neubiorev.2021.09.016.
Keshavarzi S, Kermanshahi S, Karami L, Motaghinejad M, Motevalian M, Sadr S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: the role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology. 2019;72:74-84.DOI: 10.1016/j.neuro.2019.02.004.
Shen YX, Xu SY, Wei W, Sun XX, Yang J, Liu LH, et al. Melatonin reduces memory changes and neural oxidative damage in mice treated with D‐galactose. J Pineal Res. 2002;32(3):173-178.DOI: 10.1034/j.1600-079x.2002.1o850.x.
Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, et al. Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol Rev. 2007;17(3):275-297.DOI: 10.1007/s11065-007-9031-0.
Zhao YL, Zhao W, Liu M, Liu L, Wang Y. TBHQ-Overview of multiple mechanisms against oxidative stress for attenuating methamphetamine-induced neurotoxicity. Oxid Med Cell Longev. 2020;2020:8874304,1-10.DOI: 10.1155/2020/8874304.
Ikram M, Park HY, Ali T, Kim MO. Melatonin as a potential regulator of oxidative stress, and neuroinflammation: mechanisms and implications for the management of brain injury-induced neurodegeneration. J Inflamm Res. 2021;14:6251-6264.DOI: 10.2147/JIR.S334423.
Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer's disease. Molecules. 2022;27(6):1816,1-23.DOI: 10.3390/molecules27061816.
Venkataraman P, Krishnamoorthy G, Vengatesh G, Srinivasan N, Aruldhas MM, Arunakaran J. Protective role of melatonin on PCB (Aroclor 1,254) induced oxidative stress and changes in acetylcholine esterase and membrane bound ATPases in cerebellum, cerebral cortex and hippocampus of adult rat brain. Int J Dev Neurosci. 2008;26(6):585-591.DOI: 10.1016/j.ijdevneu.2008.05.002.
Refbacks
- There are currently no refbacks.
