Isolation, characterization, and expression of the Montivipera raddei (Caucasus viper) venom metalloprotease-like protein
Abstract
Background and purpose: Snake venom contains numerous proteolytic enzymes, including metalloproteases. This study aimed to isolate, characterize the metalloproteinase from Montivipera raddei venom and insert its cDNA into a host cell genome for expressing the protein's potential use as a coagulation factor.
Experimental approach: Initially, M. raddei venom was analyzed using SDS-PAGE and ion-exchange chromatography. All purified fractions were assessed using a prothrombin time (PT) assay. Immunoblot analysis and MALDI-TOF/TOF MS spectrometry confirmed the metalloproteinase active domain in the obtained fraction. All of the confirmations were studied using the I-TASSER server. To produce the
recombinant enzyme, metalloproteinase cDNA was isolated from the total RNA of the Caucasus viper venom gland tissue and cloned into pEX-A2-H plasmid, containing homologous sequences with CHO-S cell genome. Also, it was confirmed by western blotting and PT test.
Findings/Results: Two fractions from M. raddei venom had PT values of 6 and 21 s, respectively. We confirmed the presence of a 25-KDa procoagulant metalloprotease (Met). The results indicated successful expression of the Met protein in the recombinant CHO-S cells. The Met protein was structurally similar to the target in the PDB ID. 2e3x, regulatory subunit of the blood coagulation factor X- and IX-activating enzyme. The Met protein also contained a similar binding domain with 60 amino acids, comparable to those in E. carinatus. and E. pyramidum leakeyi metalloproteinases.
Conclusion and implications: The Met protein may be a potent candidate recombinant coagulant drug. Remarkably, the thrombin time for this protein was 3 s.
Keywords
Full Text:
PDFReferences
David B, Wolfender JL, Dias DA. The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev. 2015;14(2):299-315. DOI: 10.1007/s11101-014-9367-z.
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021; 20:200-216. DOI: 10.1038/s41573-020-00114-z.
Hodgson E. Toxins and venoms. Prog Mol Biol Transl Sci. 2012;112:373-415. DOI: 10.1016/B978-0-12-415813-9.00014-3.
Siigur J, Aaspõllu A, Siigur E. Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. Toxicon. 2019;158:16-32. DOI: 10.1016/j.toxicon.2018.11.294.
Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite Envenoming. Nat Rev Dis Primers. 2017;3:17063,1-21. DOI: 10.1038/nrdp.2017.63.
Dadfarma N, Karimi G, Nowroozi J, Nejadi N, Kazemi B, Bandehpour M. Proteomic analysis of Lactobacillus casei in response to different pHs using two-dimensional electrophoresis and MALDI TOF mass spectroscopy. Iran J Microbiol. 2020;12(5): 431-436. DOI: 10.18502/ijm.v12i5.4604.
Gheflat S, Sadeghi A, Bandehpour M, Ramezanic K, Kazemi B. Designing an engineered construct gene sensitive to carbohydrate in-vitro and candidate for human insulin gene therapy in-vivo. Iranian J Pharm Res. 2019,18(4):2111-2116. DOI: 10.22037/ijpr.2019.14650.12567.
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook, 1st ed. Totowa, NJ: Humana; 2005. pp. 571-607.DOI: 10.1385/1592598900.
Rahimi H, Negahdari B, Shokrgozar MA, Madadkar-Sobhani A, Mahdian R, Foroumadi A, et al. A structural model of the anaphase promoting complex co-activator (Cdh1) and in silico design of inhibitory compounds. Res Pharm Sci. 2015;10(1):59-67.PMID: 26430458.
Papadopoulos JS, Agarwala R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics. 2007;23(9):1073-1079.DOI: 10.1093/bioinformatics/btm076.
Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6):S3-S11.DOI: 10.1097/01.ta.0000199961.02677.19.
McPartland R. Hemophilia. 1st ed. New York: Cavendish Square; 2016. pp. 7-16.
Barletta JF, Cooper B, Ohlinger MJ. Adverse drug events associated with disorders of coagulation. Crit Care Med. 2010;38(6):S198-S218.DOI: 10.1097/CCM.0b013e3181de11f9.
Dwyre DM, Fernando LP, Holland P. Hepatitis B, hepatitis C and HIV transfusion‐transmitted infections in the 21st century. Vox Sang. 2011;100(1):92-98.DOI: 10.1111/j.1423-0410.2010.01426.x.
McCleary RJR, Kini RM. Snake bites and hemostasis/thrombosis. Thromb Res. 2013;132(6):642-646.DOI: 10.1016/j.thromres.2013.09.031.
Bordon KCF, Cologna CT, Fornari-Baldo EC,Pinheiro-Junior EL, Cerni FA, Amorim FG, et al. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front Pharmacol. 2020;11:1132,1-29.DOI: 10.3389/fphar.2020.01132.
Suntravat M, Nuchprayoon I, Pérez JC. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families elapidae, viperidae, and purified russell’s viper venom-factor X activator (RVV-X). Toxicon. 2010;56(4):544-553.DOI: 10.1016/j.toxicon.2010.05.012.
Sartim MA, Cezarette GN, Jacob-Ferreira AL, Frantz G, Faccioli LH, Sampaio SV. Disseminated intravascular coagulation caused by moojenactivase, a procoagulant snake venom metalloprotease. Int J Biol Macromol. 2017;103:1077-1086.DOI: 10.1016/j.ijbiomac.2017.05.146.
Kornalik F, Blombäck B. Prothrombin activation induced by Ecarin-a prothrombin converting enzyme from Echis carinatus venom. Thromb Res.1975;6(1):53-63.DOI: 10.1016/0049-3848(75)90150-4.
Lange U, Nowak G, Bucha E. Ecarin chromogenic assay-a new method for quantitative determination of direct thrombin inhibitors like hirudin. Pathophysiol Haemost Thromb. 2003;33(4):184-191.DOI: 10.1159/000081506.
Williams V, White J, Schwaner TD, Sparrow A. Variation in venom proteins from isolated populations of tiger snakes (Notechis ater niger, N. scutatus) in South Australia. Toxicon 1988;26: 1067-1075.DOI: 10.1016/0041-0101(88)90205-X.
Ogawa T, Oda-Ueda N, Hisata K, Nakamura H, Chijiwa T, Hattori S. Alternative mRNA splicing in three venom families underlying a possible production of divergent venom proteins of the Habu snake, protobothrops flavoviridis. Toxins. 2019;11(10):1-20.DOI: 10.3390/toxins11100581.
Taherian M, Yaghoobi H, Bandehpour M. Evaluation of the coagulant effect of Zanjani and Latifi viper snake venom endemic in Iran. Trends Pept Protein Sci. 2016;1:27-30.DOI: 10.22037/tpps.v1i1.13130.
Zhang ST, Lu P, Qin YF, Chen SJ, Guo AG. Cloning and identification of a novel P-II class snake venom metalloproteinase from Gloydius halys. Appl Biochem Biotechnol. 2010;162(5):1391-1402.DOI: 10.1007/s12010-010-8911-6.
Ompraba G, Chapeaurouge A, Doley R, Devi KR, Padmanaban P, Venkatraman C. Identification of a novel family of snake venom proteins veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res. 2010;9(4):1882-1893.DOI: 10.1021/pr901044x.
Xia X, Ma Y, Xue S, Wang A, Tao J, Zhao Y. Cloning and molecular characterization of BumaMPs1, a novel metalloproteinases from the venom of scorpion Buthus martensi Karsch. Toxicon. 2013;76:234-238.DOI: 10.1016/j.toxicon.2013.10.006.
Pinyachat A, Rojnuckarin P, Muanpasitporn C, Singhamatr P, Nuchprayoon S. Albocollagenase, a novel recombinant P-III snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris), digests collagen and inhibits platelet aggregation. Toxicon. 2011;57(5):772-780.DOI: 10.1016/j.toxicon.2011.02.011.
Berger M, Pinto AF, Guimarães JA. Purification and functional characterization of bothrojaractivase, a prothrombin-activating metalloproteinase isolated from Bothrops jararaca snake venom. Toxicon. 2008;51(4):488-501.DOI: 10.1016/j.toxicon.2007.09.005.
A practical guide to haemostasis. Available on: https://www.practical-haemostasis.com/Miscellaneous /ecarin_ct.html.
Poulain A, Mullick A, Massie B, Durocher Y. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. J Biotechnol. 2019;296:32-41.DOI: 10.1016/j.jbiotec.2019.03.009.
da Rosa R, Schenkel EP, Bernarde,s LSC. Semisynthetic and newly designed derivatives based on natural chemical scaffolds: moving beyond natural products to fight Trypanosoma cruzi. Phytochem Rev. 2020;19:105-122.DOI: 10.1007/s11101-020-09659-8.
Mirbaha S, Rezaei M, Emamzadeh R, Zarkesh E, Sayyed H. Design and production of a novel chimeric human growth hormone superagonist fused to human Fc domain. Res Pharm Sci. 2022;17(3):284-293.DOI: 10.4103/1735-5362.343082.
Shayesteh M, Ghasemi F, Tabandeh F, Yakhchali B, Shakibaie M. Design, construction, and expression of recombinant human interferon beta gene in CHO-s cell line using EBV-based expression system. Res Pharm Sci. 2020;15(2):144-153.DOI: 10.4103/1735-5362.283814.
Pairawan MS, Bolhassani A, Rahimpour A. Enhanced transient expression of an anti-CD52 monoclonal antibody in CHO cells through utilization of miRNA sponge technology. Res Pharm Sci. 2019;14(4):335-342.DOI: 10.4103/1735-5362.263626.
Refbacks
- There are currently no refbacks.
