Phytochemicals from Pyrrosia longifolia (Burm. f.) C.V. Morton with antibacterial activity
Abstract
Background and purpose: Pyrrosia longifolia is one of the medicinal plants in Indonesia. However, it has received little attention regarding pharmacological properties and phytochemicals. This study aimed to isolate bioactive compounds and evaluate their antibacterial activities.
Experimental approach: The secondary metabolites were isolated using a bioassay-guided approach. The aerial part was macerated in methanol and the crude methanol was partitioned with organic solvents to obtain n-hexane, dichloromethane, ethyl acetate, and water extracts. The ethyl acetate extract was purified using chromatography procedures, yielding six chemicals, and their structures were determined using spectroscopy. The antibacterial activity of the compounds was evaluated.
Findings/Results: Six secondary phytochemical metabolites were identified including naringin (1), catechin (2), quercetin (3), rutin (4), kaempferol (5), and mangiferin (6). The absolute configurations of compounds 1 and 2 were ascertained using electronic circular dichroism as 2S for naringin and 2R, 3S for catechin. The compounds exhibited antibacterial activity against several pathogenic bacteria, with MIC and MBC values ranging from 7.8 to 250 μg/mL. Computational investigations of these compounds revealed a substantial affinity for bacterial receptors' active and allosteric regions. Furthermore, rutin exhibited the capacity to reduce the activity of β-ketoacyl-acyl carrier protein synthase III, enhancing its antibacterial effectiveness.
Conclusion and implications: The in-vitro assessment revealed that the six identified compounds possess a wide range of antibacterial activity, which was corroborated by in-silico analyses. However, further investigation is required to back up the conclusion of this study.
Keywords
Full Text:
PDFReferences
Tsutsumi C, Praptosuwiryo TN, Kato M. A preliminary study on mild hemiparasitic epiphytic fern Pyrrosia piloselloides (Polypodiaceae). Bull Natl Mus Nat Sci, Ser B. 2018;44(3):121-125.DOI: 10.31557/APJCP.2019.20.1.185.
Committee CNP. Pharmacopoeia Chinensis Ren ZH, He MG, Dian GY, editors. China: Chemistry Engineering Publishers, Beijing; 2000.
Yang C, Shi JG, Mo SY, Yang YC. Chemical constituents of Pyrrosia petiolosa. J Asian Nat Prod Res. 2003;5(2):143-150.DOI: 10.1080/1028602031000066843.
Cheng D, Zhang Y, Gao D, Zhang H. Antibacterial and anti-inflammatory activities of extract and fractions from Pyrrosia petiolosa (Christ et Bar.) Ching. J Ethnopharmacol. 2014;155(2):1300-1305.DOI: 10.1016/j.jep.2014.07.029.
Brownsey P, Shepherd L, de Lange P, Perrie L. Pyrrosia serpens (G. Forst.) Ching a new record for the fern flora of the Kermadec Islands. N Z J Bot. 2021;59(2):229-243.DOI: 10.1080/0028825X.2020.1796716.
Lang TQ, Zhang Y, Chen F, Luo GY, Yang WD. Characterization of chemical components with diuretic potential from Pyrrosia petiolosa. J Asian Nat Prod Res. 2021;23(8):764-771.DOI: 10.1080/10286020.2020.1786065.
Akhmadjon S, Hong SH, Lee EH, Park HJ, Cho YJ. Biological activities of extracts from Tongue fern (Pyrrosia lingua). J Appl Biol Chem. 2020; 63(3):181-188.DOI: 10.3839/JABC.2020.025.
He K, Fan LL, Wu TT, Du J. A new xanthone glycoside from Pyrrosia sheareri. Nat Prod Res. 2019;33(20):2982-2987.DOI: 10.1080/14786419.2018.1514398.
Chen YJ, Xie GY, Xu GK, Dai YQ, Shi L, Qin MJ. Chemical constituents of Pyrrosia calvata. Nat Prod Commun. 2015;10(7):1191-1193.
PMID: 26411008.
Wang N, Wang JH, Li X, Ling JH, Li N. Flavonoids from Pyrrosia petiolosa (Christ) Ching: Note. J Asian Nat Prod Res. 2006;8(8):753-756.
DOI: 10.1080/10286020500246550.
Austin DE. Plant resources of South-East Asia No 15(2): Ferns and Fern Allies. Econ Bot. 2003;57(3):432,170-174.DOI: 10.1663/0013-0001(2003)057[0432:BREDFA ]2.0.CO;2.
Nugraha AS, Triatmoko B, Wangchuk P, Keller PA. Vascular epiphytic medicinal plants as sources of therapeutic agents: their ethnopharmacological uses, chemical composition, and biological activities. Biomolecules. 2020;10(2):181,1-66.DOI: 10.3390/biom10020181.
Khodijah R, Teruna HY, Hendra R. Antioxidant and α-glucosidase inhibition of Pyrrosia longifolia extracts. J Pharm Educ. 2022;22(2):16-19.DOI: 10.46542/pe.2022.222.1619.
Khodijah R, Haryani Y, Teruna HY, Hendra R. Antibacterial properties of Pyrrosia longifolia extracts. J Pharm Educ. 2023;23(2):168-173.DOI: 10.46542/pe.2023.232.168173.
Baig MH, Ahmad K, Rabbani G, Danishuddin M, Choi I. Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Current neuropharmacology. 2018;16(6):740-748.DOI: 10.2174/1570159X15666171016163510.
Army MK, Khodijah R, Haryani Y, Teruna HY, Hendra R. Antibacterial in vitro screening of Helminthostachys zeylanica (L.) Hook. root extracts. J Pharm Pharmacogn Res. 2023;11(2):291-296.DOI: 10.56499/jppres22.1540_11.2.291.
Frimayanti N, Chee CF, Zain SM, Rahman NA. Design of new competitive dengue Ns2b/Ns3 protease inhibitors-a computational approach. Int J Mol Sci. 2011;12(2):1089-1100. DOI: https://doi.org/10.3390/ijms12021089.
Piao XL, Wu Q, Han S, Kim HY, Lee SH. Simultaneous determination of flavanone glycosides in the fruit of Citrus paradisi and C. grandis by HPLC-PDA. Nat Prod Sci. 2011;17(4):337-341.DOI: 10.20307/nps.2016.22.4.231.
Supriatno S, Hidayat AT, Farabi K, Abdullah FF, Nurlelasari N, Herlina T, et al. Flavanoids from the stembark of Chisocheton pentandrus (Meliaceae). J Kimia VALENSI. 2017;3(2):123-127.DOI: 10.15408/jkv.v0i0.6077.
Hendra R, Keller PA. Flowers in Australia: phytochemical studies on the Illawarra flame tree and Alstonville. Aust J Chem. 2016;69:925-927.DOI: 10.1071/CH16058.
Hendra R, Keller PA. Phytochemical studies on two Australian Anigozanthos plant species. J Nat Prod. 2017;80(7):2141-2145.DOI: 10.1021/acs.jnatprod.7b00063.
Talamond P, Mondolot L, Gargadennec A, de Kochko A, Hamon S, Fruchier A, et al. First report on mangiferin (C-glucosyl-xanthone) isolated from leaves of a wild coffee plant, Coffea pseudozanguebariae (Rubiaceae). Acta Bot Gallica. 2008;155(4):513-519.DOI: 10.1080/12538078.2008.10516130.
Hendra R, Willis A, Keller PA. Phytochemical studies on the Australian native plant species Acacia pycnantha and Jacaranda mimosifolia D. Don. Nat Prod Res. 2019;33(14):1997-2003.DOI: 10.1080/14786419.2018.1483922.
Slade D, Ferreira D, Marais JPJ. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry. 2005; 66(18):2177-2215.DOI: 10.1016/j.phytochem.2005.02.002.
Garo E, Wolfender JL, Hostettmann K, Hiller W, Antus S, Mavi S. Prenylated flavanones from Monotes engleri: on‐line structure elucidation by LC/UV/NMR. Helv Chim Acta. 1998; 81(3‐4):754-763.DOI: 10.1002/hlca.19980810325.
Friedrich W, Galensa R. Identification of a new flavanol glucoside from barley (Hordeum vulgare L.) and malt. Eur Food Res Technol. 2002;214:388-393.DOI: 10.1007/s00217-002-0498-x.
Wang Q, Pei XX, Dai X, Wang QX, Huang GZ, Cao JG. Chemical constituents of Pyrrosia davidii (Baker) Ching. Biochem Syst Ecol. 2023;108:104646.DOI: 10.1016/j.bse.2023.104646.
Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol. 2004; 94(3):223-253.DOI: 10.1016/j.ijfoodmicro.2004.03.022.
Balouiri M, Sadiki M, Saad IK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2):71-79.DOI: 10.1016/j.jpha.2015.11.005.
Uzarski JS, DiVito MD, Wertheim JA, Miller WM. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials. 2017;129:163-175.DOI: 10.1016/j.biomaterials.2017.02.015.
Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42(4):321-324.DOI: 10.1016/j.ymeth.2007.01.006.
Tan Z, Deng J, Ye Q, Zhang Z. The antibacterial activity of natural-derived flavonoids. Curr Top Med Chem. 2022;22(12):1009-1919.DOI: 10.2174/1568026622666220221110506.
Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2015; 22(1):132-149.DOI: 10.2174/0929867321666140916113443.
Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb perspect Biol. 2010; 2(5):a000414,1-16.PMID: 20452953.
Nurhayati B, Singgih Wibowo M, Widyastuti Y, Putu Erawijantari P, Widowati W, Rizki Fadhil Pratama M, et al. In silico analysis of plantaricin EF that expressed by plasmid-associated bacteriocin production gene of Lactobacillus plantarum IBL-2 for anti-candida agent potential. Res J Microbiol. 2015; 10(12):582-591.DOI: 10.3923/jm.2015.582.591.
Amer HH, Eldrehmy EH, Abdel-Hafez SM, Alghamdi YS, Hassan MY, Alotaibi SH. Antibacterial and molecular docking studies of newly synthesized nucleosides and Schiff bases derived from sulfadimidines. Sci Rep. 2021;11(1):17953,1-14.DOI: 10.1038/s41598-021-97297-1.
Lee JY, Jeong KW, Shin S, Lee JU, Kim Y. Antimicrobial natural products as β-ketoacyl-acyl carrier protein synthase III inhibitors. Biorg Med Chem. 2009;17(15):5408-5413.DOI: 10.1016/j.bmc.2009.06.059.
Lee JY, Lee JH, Jeong KW, Lee EJ, Kim YM. Flavonoid inhibitors of β-ketoacyl acyl carrier protein synthase III against methicillin-resistant staphylococcus aureus. Bull Korean Chem Soc. 2011;32(8):2695-2699.DOI: 10.5012/bkcs.2011.32.8.2695.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.