Antiapoptotic and antinociceptive effects of Achillea millefolium L. aqueous extract in rats with experimental painful diabetic neuropathy

Mojtaba Moradi, Jalal Hassanshahi, Mohammad Reza Rahmani, Ali Shamsizadeh, Ayat Kaeidi

Abstract


Background and purpose: Neuropathy is one of the common complications of diabetes mellitus. This study aimed to determine the analgesic and antiapoptotic effects of the aqueous extract of Achillea millefolium L. (Ach) in rats with experimental painful diabetic neuropathy by behavioral and molecular procedures.

Experimental approach: Thirty male Wistar rats were divided into 5 groups including control, diabetes + saline, and diabetes + Ach extract (doses of 150, 300, and 600 mg/kg/day for 3 weeks, orally). A tail-flick test was performed to assess the pain threshold in different groups. Western blotting test was used to evaluate the apoptotic (Bax, Bcl2, cleaved caspase-3, and cytochrome-c) and inflammatory (TNF-α and NF-κB) protein factors in the lumbar portion of the spinal cord tissue. Also, commercial assay kits were used to evaluate oxidative stress factors (MDA, GPx, and SOD enzyme activity) in the lumbar portion of the spinal cord tissue.

Findings/Results: Results showed that administering Ach extract at the doses of 300 and 600 mg/kg/day significantly increased the nociception threshold in treated diabetic animals compared to untreated diabetic animals. Moreover, the treatment of diabetic animals with Ach extract (300 and 600 mg/kg/day) significantly reduced the oxidative stress, inflammation, and apoptosis biochemical indicators in the lumbar spinal cord tissue compared to the untreated diabetic group.

Conclusion and implications: The findings showed that Ach extract has neuroprotective and anti-nociceptive effects in rats with diabetic neuropathy. The effects can be due to the inhibition of oxidative stress, inflammation, and apoptosis in the spinal cord tissue.

 


Keywords


Apoptosis; Diabetic neuropathy; Hyperalgesia; Inflammation; Oxidative stress.

Full Text:

PDF PDF

References


Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol. 2018;833:472-523.DOI: 10.1016/j.ejphar.2018.06.034.

Zychowska M, Rojewska E, Przewlocka B, Mika J. Mechanisms and pharmacology of diabetic neuropathy- experimental and clinical studies. Pharmacol Rep. 2013;65(6):1601-1610.DOI: 10.1016/s1734-1140(13)71521-4.

Papatheodorou K, Banach M, Edmonds M, Papanas N, Papazoglou D. Complications of diabetes. J Diabetes Res. 2015;2015:189525,1-5.DOI: 10.1155/2015/189525.

Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):41,1-18.DOI: 10.1038/s41572-019-0092-1.

Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: physiopathology and treatment. World J Diabetes. 2015;6(3):432-444.DOI: 10.4239/wjd.v6.i3.432.

Calcutt NA. Diabetic neuropathy and neuropathic pain: a (con)fusion of pathogenic mechanisms? Pain. 2020;161(Suppl 1):S65-S86.DOI: 10.1097/j.pain.0000000000001922.

Niknia S, Kaeidi A, Hajizadeh MR, Mirzaei MR, Khoshdel A, Hajializadeh Z, et al. Neuroprotective and antihyperalgesic effects of orexin-A in rats with painful diabetic neuropathy. Neuropeptides. 2019;73:34-40.DOI: 10.1016/j.npep.2018.11.001.

Rasoulian B, Hajializadeh Z, Esmaeili-Mahani S, Rashidipour M, Fatemi I, Kaeidi A. Neuroprotective and antinociceptive effects of rosemary (Rosmarinus officinalis L.) extract in rats with painful diabetic neuropathy. J Physiol Sci. 2019;69(1):57-64.DOI: 10.1007/s12576-018-0620-x.

Kaeidi A, Hajializadeh Z, Jahandari F, Fatemi I. Leptin attenuates oxidative stress and neuronal apoptosis in hyperglycemic condition. Fundam Clin Pharmacol. 2019;33(1):75-83.DOI: 10.1111/fcp.12411.

Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD, Miranda-Díaz AG. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J Diabetes Res. 2017;2017:1673081,1-15.DOI: 10.1155/2017/1673081.

Sztanek F, Molnárné Molnár Á, Balogh Z. The role of oxidative stress in the development of diabetic neuropathy. Orv Hetil. 2016;157(49):1939-1946.DOI: 10.1556/650.2016.30609.

Babizhayev MA, Strokov IA, Nosikov VV, Savel’yeva EL, Sitnikov VF, Yegorov YE, et al. The role of oxidative stress in diabetic neuropathy: generation of free radical species in the glycation reaction and gene polymorphisms encoding antioxidant enzymes to genetic susceptibility to diabetic neuropathy in the population of type I diabetic patients. Cell Biochem Biophys. 2015;71(3): 1425-1443.DOI: 10.1007/s12013-014-0365-y.

Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL. Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep. 2016;16(3):29,1-17.DOI: 10.1007/s11892-016-0727-5.

Hartemann A, Attal N, Bouhassira D, Dumont I, Gin H, Jeanne S, et al. Painful diabetic neuropathy: diagnosis and management. Diabetes Metab. 2011;37(5):377-388.DOI: 10.1016/j.diabet.2011.06.003.

Ali SI, Gopalakrishnan B, Venkatesalu V. Pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: a review. Phytother Res. 2017;31(8):1140–1161.DOI: 10.1002/ptr.5840.

Ngo HTT, Hwang E, Kang H, Park B, Seo SA, Yi TH. Anti-inflammatory effects of Achillea millefolium on atopic dermatitis-like skin lesions in NC/Nga mice. Am J Chin Med. 2020;48(5):1121-1140.DOI: 10.1142/S0192415X2050055X.

Hasanzadeh Khosh A, Hasanzadeh S, Shalizar Jalali A. Ameliorative effects of Achillea millefolium inflorescences alcoholic extract on nicotine-induced reproductive toxicity in male rat: apoptotic and biochemical evidences. Vet Res Forum. 2017;8(2):97-104.PMID: 28785383.

Vazirinejad R, Ayoobi F, Arababadi MK, Eftekharian MM, Darekordi A, Goudarzvand M, et al. Effect of aqueous extract of Achillea millefolium on the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Indian J Pharmacol. 2014;46(3):303-308.DOI: 10.4103/0253-7613.132168.

Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, et al. Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res. 2015;99:1-10.DOI: 10.1016/j.phrs.2015.05.002.

Chen P, Huo X, Liu W, Li K, Sun Z, Tian J. Apigenin exhibits anti-inflammatory effects in LPS-stimulated BV2 microglia through activating GSK3β/Nrf2 signaling pathway. Immunopharmacol Immunotoxicol. 2020;42(1):9-16.DOI: 10.1080/08923973.2019.1688345.

Li F, Lang F, Zhang H, Xu L, Wang Y, Zhai C, et al. Apigenin alleviates endotoxin-induced myocardial toxicity by modulating inflammation, oxidative stress, and autophagy. Oxid Med Cell Longev. 2017;2017:2302896,1-10.DOI: 10.1155/2017/2302896.

Fallah Rajabpour Zare M, Rakhshan K, Aboutaleb N, Nikbakht F, Naderi N, Bakhshesh M, et al. Apigenin attenuates doxorubicin-induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sci. 2019;232:116623,1-8.DOI: 10.1016/j.lfs.2019.116623.

Li L, Luo W, Qian Y, Zhu W, Qian J, Li J, et al. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. 2019;59:152774,1-40.

DOI: 10.1016/j.phymed.2018.11.034.

Pires JM, Mendes FR, Negri G, Duarte-Almeida JM, Carlini EA. Antinociceptive peripheral effect of Achillea millefolium L. and Artemisia vulgaris L.: both plants known popularly by brand names of analgesic drugs. Phytother Res. 2009;23(2): 212-219.DOI: 10.1002/ptr.2589.

Ayoobi F, Moghadam-Ahmadi A, Amiri H, Vakilian A, Heidari M, Farahmand H, et al. Achillea millefolium is beneficial as an add-on therapy in patients with multiple sclerosis: a randomized placebo-controlled clinical trial. Phytomedicine. 2019;52:89-97.DOI: 10.1016/j.phymed.2018.06.017.

Kaeidi A, Esmaeili-Mahani S, Abbasnejad M, Sheibani V, Rasoulian B, Hajializadeh Z, et al. Satureja khuzestanica attenuates apoptosis in hyperglycemic PC12 cells and spinal cord of diabetic rats. J Nat Med. 2013;67(1):61-69.DOI: 10.1007/s11418-012-0646-y.

Hajializadeh Z, Nasri S, Kaeidi A, Sheibani V, Rasoulian B, Esmaeili-Mahani S. Inhibitory effect of Thymus caramanicus Jalas on hyperglycemia-induced apoptosis in in vitro and in vivo models of diabetic neuropathic pain. J Ethnopharmacol. 2014;153(3):596-603.DOI: 10.1016/j.jep.2014.02.049.

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-1070.DOI: 10.1161/CIRCRESAHA.110.223545.

Kamboj SS, Vasishta RK, Sandhir R. N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. J Neurochem. 2010;112(1):77-91.DOI: 10.1111/j.1471-4159.2009.06435.x.

Sharma SS, Sayyed SG. Effects of trolox on nerve dysfunction, thermal hyperalgesia, and oxidative stress in experimental diabetic neuropathy. Clin Exp Pharmacol Physiol. 2006;33(11):1022-1028.DOI: 10.1111/j.1440-1681.2006.04481.x.

Chou ST, Peng HY, Hsu JC, Lin CC, Shih Y. Achillea millefolium L. essential oil inhibits LPS-induced oxidative stress and nitric oxide production in RAW 264.7 macrophages. Int J Mol Sci. 2013;14(7): 12978-12993.DOI: 10.3390/ijms140712978.

Zhang J, Zhao X, Zhu H, Wang J, Ma J, Gu M. Apigenin protects against renal tubular epithelial cell injury and oxidative stress by high glucose via regulation of NF-E2-related factor 2 (Nrf2) pathway. Med Sci Monit. 2019;25:5280-5288.DOI: 10.12659/MSM.915038.

Hassan SM, Khalaf MM, Sadek SA, Abo-Youssef AM. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm Biol. 2017;55(1):766-774.DOI: 10.1080/13880209.2016.1275704.

Wang GG, Lu XH, Li W, Zhao X, Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid-Based Complement Alternat Med. 2011;2011:323171,1-7.DOI: 10.1155/2011/323171.

Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin-induced painful diabetic neuropathy. Fitoterapia. 2012;83(4):650-659.DOI: 10.1016/j.fitote.2012.01.010.

Sukumaran P, Nascimento Da Conceicao V, Sun Y, Ahamad N, Saraiva LR, Selvaraj S, et al. Calcium signaling regulates autophagy and apoptosis. Cells. 2021;10(8):2125,1-20.DOI: 10.3390/cells10082125.

Orrenius S, Gogvadze V, Zhivotovsky B. Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 2015;460(1):72-81.DOI: 10.1016/j.bbrc.2015.01.137.

Barsukova AG, Bourdette D, Forte M. Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress. Eur J Neurosci. 2011;34(3):437-447.DOI: 10.1111/j.1460-9568.2011.07760.x.

Mittal R, Kumar A, Singh DP, Bishnoi M, Nag TC. Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: targeting Nrf2/HO-1/NF-kB and COX signaling pathway. Inflammopharmacology. 2018;26(3):755-768.DOI: 10.1007/s10787-017-0413-5.

Negi G, Kumar A, Sharma SS. Nrf2 and NF-κB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res. 2011;8(4):294-304.DOI: 10.2174/156720211798120972.

Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK, et al. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol. 2017;313(2):F414-F422.DOI: 10.1152/ajprenal.00393.2016.

Zolghadri Y, Fazeli M, Kooshki M, Shomali T, Karimaghayee N, Dehghani M. Achillea millefolium L. hydro-alcoholic extract protects pancreatic cells by down regulating IL- 1β and iNOS gene expression in diabetic rats. Int J Mol Cell Med. 2014;3(4):255-262.PMID: 25635252.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.