Expression and purification of SARS-CoV-2 receptor binding domain in Escherichia coli for diagnostic and therapeutic purposes

Hajarossadat Ghaderi , Alireza Shoari , Shima Salehi, Ayda Hassanzadeh Eskafi, Mahdi Habibi-Anbouhi, Reza Ahangari Cohan, Reza Moazzami, Mahdi Behdani

Abstract


Background and purpose: SARS-CoV-2 causes a severe respiratory disease known as COVID-19 and is responsible for a global viral pandemic. The SARS-CoV-2 receptor binding domain (RBD) is located on the spike protein, which identifies and binds to the angiotensin-converting enzyme 2 (ACE2) receptor. The RBD is an important target for developing virus-neutralizing antibodies, vaccines, and   inhibitors.

Experimental approach: In this study, recombinant SARS-CoV-2 RBD was expressed in E. coli BL21 (DE3) and purified and its binding activity was determined. Purification was conducted using the Ni-NTA column. ELISA. flow cytometry assays were set to evaluate the binding ability of recombinant RBD to different anti-RBD antibodies and native ACE2 receptors on HEK293A cells, respectively.

Findings/Results: The SDS-PAGE analysis revealed the corresponding band at 27 kDa in the culture after induction with 0.7 mM IPTG, while the corresponding band was not observed in the culture without IPTG induction. ELISA results showed that antibodies produced in the human sera could bind to the recombinant RBD protein and the commercial anti-RBD antibody. Also, flow cytometry analysis revealed that the recombinant RBD could bind to human ACE2 on the surface of HEK293A cells.

Conclusion and implication: Our outcomes displayed that the recombinant RBD expressed in the E. coli strain has biological activity and can be used as an antigen for the development of diagnosis kits and vaccines as well as a tool for screening drugs against SASR-CoV-2.

 

 


Keywords


Angiotensin-converting enzyme 2; Gene cloning; Purification; Receptor binding domain; Severe-acute respiratory syndrome coronavirus 2.

Full Text:

PDF

References


Fatemi B, Rezaei S, Peikanpour M, Dastan F, Saffaei A. Efficacy of intravenous immunoglobulins (IVIG) in COVID-19 patients: a systematic review and meta-analysis. Res Pharm Sci. 2023;18(4): 346-357.DOI: 10.4103/1735-5362.378082.

Modig K, Ahlbom A, Ebeling M. Excess mortality from COVID-19: weekly excess death rates by age and sex for Sweden and its most affected region. Eur J Public Health. 2021;31(1):17-22.DOI: 10.1093/eurpub/ckaa218.

Wang B, Zhang L, Wang Y, Dai T, Qin Z, Zhou F, et al. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):1-15.DOI: 10.1038/s41392-022-00986-0.

Sarkesh A, Daei Sorkhabi A, Sheykhsaran E, Alinezhad F, Mohammadzadeh N, Hemmat N, et al. Extrapulmonary clinical manifestations in COVID-19 patients. Am J Trop Med Hyg. 2020;103(5):1783-1796.DOI: 10.4269/ajtmh.20-0986.

Satarker S, Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res. 2020;51(6):482-491.DOI: 10.1016/j.arcmed.2020.05.012.

Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-1149.DOI: 10.1038/s41401-020-0485-4.

Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol cell Biol. 2022;23(1):3-20.DOI: 10.1038/s41580-021-00418-x.

Min L, Sun Q. Antibodies and vaccines target RBD of SARS-CoV-2. Front Mol Biosci. 2021;8:671633,1-9.DOI: 10.3389/fmolb.2021.671633.

Shin YJ, König-Beihammer J, Vavra U, Schwestka J, Kienzl NF, Klausberger M, et al. N-glycosylation of the SARS-CoV-2 receptor binding domain is important for functional expression in plants. Front Plant Sci. 2021;12:1154,1-14.DOI: 10.3389/fpls.2021.689104.

Farnós O, Venereo-Sánchez A, Xu X, Chan C, Dash S, Chaabane H, et al. Rapid high-yield production of functional SARA-coV-2 receptor binding domain by viral and non-viral transient expression for pre-clinical evaluation. Vaccines. 2020;8(4): 654,1-20.DOI:10.3390/vaccines8040654.

Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther. 2021;6(1):396,1-24.DOI: 10.1038/s41392-021-00809-8.

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330-331.DOI: 10.1126/science.abb9983.

Chen WH, Pollet J, Strych U, Lee J, Liu Z, Kundu RT, et al. Yeast-expressed recombinant SARS-CoV-2 receptor binding domain RBD203-N1 as a COVID-19 protein vaccine candidate. Protein Expr Purif. 2022;190:106003,1-10.DOI: 10.1016/j.pep.2021.106003.

De March M, Terdoslavich M, Polez S, Guarnaccia C, Poggianella M, Marcello A, et al. Expression, purification and characterization of SARS-CoV-2 spike RBD in ExpiCHO cells. Protein Expr Purif. 2022;194:106071,1-6.DOI: 10.1016/j.pep.2022.106071.

He Y, Qi J, Xiao L, Shen L, Yu W, Hu T. Purification and characterization of the receptor‐binding domain of SARS‐CoV‐2 spike protein from Escherichia coli. Eng Life Sci. 2021;21(6):453-460.DOI: 10.1002/elsc.202000106.

Fan Y, Wei J, Wang W, Li C, Pan G, Keiffer T, et al. Utilization of recombinant Baculovirus expression system to produce the RBD domain of SARS-CoV-2 spike protein. Pathogens. 2022;11(6):672,1-9.DOI: 10.3390/pathogens11060672.

Khow O, Suntrarachun S. Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac J Trop Biomed. 2012;2(2): 159-162.DOI: 10.1016/S2221-1691(11)60213-X.

Sadeghian-Rizi T, Ebrahimi A, Moazzen F, Yousefian H, Jahanian-Najafabadi A. Improvement of solubility and yield of recombinant protein expression in E. coli using a two-step system. Res Pharm Sci. 2019; 14(5): 400-407.DOI: 10.4103/1735-5362.268200.

Chen J, Miao L, Li JM, Li YY, Zhu QY, Zhou CL, et al. Receptor-binding domain of SARS-Cov spike protein: soluble expression in E. coli, purification and functional characterization. World J Gastroenterol. 2005;11(39):6159-6164.DOI: 10.3748/wjg.v11.i39.6159.

Du L, Zhao G, Chan CCS, Sun S, Chen M, Liu Z, et al. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity. Virology. 2009;393(1): 144-150.DOI: 10.1016/j.virol.2009.07.018.

Márquez-Ipiña AR, González-González E, Rodríguez-Sánchez IP, Lara-Mayorga IM, Mejía- Rodríguez-Sánchez IP, Lara-Mayorga IM, Mejía-Manzano LA, Sánchez-Salazar MG, et al. Serological test to determine exposure to SARS-CoV-2: ELISA based on the receptor-binding domain of the spike protein (S-RBDN318-V510) expressed in Escherichia coli. Diagnostics. 2021;11(2):271,1-15.DOI: 10.3390/diagnostics11020271.

Yazdani M, Khezri J, Hadizadeh N, Zamani Amir Zakaria J, Naderi M, Mahmoodian S, et al. Depinar, a drug that potentially inhibits the binding and entry of COVID-19 into host cells based on computer-aided studies. Res Pharm Sci. 2021; 16(3):315-325.DOI: 10.4103/1735-5362.314830.

Cabal ABS, Wu TY. Recombinant protein technology in the challenging Era of coronaviruses. Processes. 2022;10(5):946,1-24.DOI: 10.3390/pr10050946.

Azadi S, Sadjady SK, Mortazavi SA, Naghdi N, Mahboubi A, Solaimanian R. Bioprocess and downstream optimization of recombinant human growth hormone in Pichia pastoris. Res Pharm Sci. 2018;13(3):222-238.DOI: 10.4103/1735-5362.228953.

Gao X, Peng S, Mei S, Liang K, Khan MSI, Vong EG, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain (RBD) from E. coli system. Prep Biochem Biotechnol. 2022;52(3):318-324.DOI: 10.1080/10826068.2021.1941106.

Garcia-Cordero J, Mendoza-Ramirez J, Fernandez-Benavides D, Roa-Velazquez D, Filisola-Villasenor J, Martinez-Frias SP, et al. Recombinant protein expression and purification of N, S1, and RBD of SARS-CoV-2 from mammalian cells and their potential applications. Diagnostics. 2021;11(10):1808,1-14.DOI: 10.3390/diagnostics11101808.

Chen R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv. 2012;30(5):1102-1107.DOI: 10.1016/j.biotechadv.2011.09.013.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.