Bilirubin, once a toxin but now an antioxidant alleviating non-alcoholic fatty liver disease in an autophagy-dependent manner in high-fat diet-induced rats: a molecular and histopathological analysis
Abstract
Background and purpose: As an endogenous antioxidant, bilirubin has surprisingly been inversely correlated with the risk of non-alcoholic fatty liver disease (NAFLD). Thereupon, the current evaluation was designed to assess the positive effects of bilirubin on the autophagy flux, as well as the other pathogenic processes and parameters involved in the expansion of NAFLD.
Experimental approach: Thirty adult male rats weighing 150-200 g with free access to sucrose solution (18%) were randomly subdivided into 5 groups (n = 6). Subsequently, the animals were euthanized, and their blood specimens and liver tissue samples were collected to measure serum biochemical indices, liver histopathological changes, intrahepatic triglycerides content, and tissue stereological alterations. Furthermore, the expression levels of autophagy-related genes (Atgs) were measured to assess the state of the autophagy flux.
Findings/Results: Fasting blood glucose, body weight, as well as liver weight, liver-specific enzyme activity, and serum lipid profile indices markedly decreased in rats that underwent a six-week bilirubin treatment compared to the control group. In addition, histopathological studies showed that hepatic steatosis, fibrosis, inflammation, and necrosis significantly decreased in the groups that received bilirubin compared to the control animals. Bilirubin also caused significant alterations in the expression levels of the Atgs, as well as the Beclin-1 protein.
Conclusion and implication: Bilirubin may have potential ameliorative effects on NAFLD-associated liver damage. Moreover, the beneficial effects of bilirubin on intrahepatic lipid accumulation and steatosis were comparable with the group that did not ever receive bilirubin.
Keywords
Full Text:
PDFReferences
El-Din SHS, El-Lakkany NM, El-Naggar AA, Hammam OA, Abd El-Latif HA, Ain-Shoka AA, et al. Effects of rosuvastatin and/or β-carotene on non-alcoholic fatty liver in rats. Res Pharm Sci. 2015;10(4):275-287.PMID: 26600855.
El-Lakkany NM, Seif El-Din SH, Sabra AA, Hammam OA, Ebeid FA. Co-administration of metformin and N-acetylcysteine with dietary control improves the biochemical and histological manifestations in rats with non-alcoholic fatty liver. Res Pharm Sci. 2016;11(5):374-382.DOI: 10.4103/1735-5362.192487.
Hamidi-Zad Z, Moslehi A, Rastegarpanah M. Attenuating effects of allantoin on oxidative stress in a mouse model of nonalcoholic steatohepatitis: role of SIRT1/Nrf2 pathway. Res Pharm Sci. 2021;16(6):651-659.DOI: 10.4103/1735-5362.327511.
Naik A, Kosir R, Rozman D. Genomic aspects of NAFLD pathogenesis. Genomics. 2013;102(2):84-95.DOI: 10.1016/j.ygeno.2013.03.007.
Sadeghinejad S, Mousavi M, Zeidooni L, Mansouri E, Mohtadi S, Khodayar MJ. Ameliorative effects of umbelliferone against acetaminophen-induced hepatic oxidative stress and inflammation in mice. Res Pharm Sci. 2024;19(1):83-92.DOI: 10.4103/1735-5362.394823.
Xu J, Cao K, Li Y, Zou X, Chen C, Szeto IM, et al. Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet. J Nutr. 2014;144(4):475-483.DOI: 10.3945/jn.113.187450.
Eliades M, Spyrou E. Vitamin D: a new player in non-alcoholic fatty liver disease? World J Gastroenterol. 2015;21(6):1718-1727.DOI: 10.3748/wjg.v21.i6.1718.
Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science. 2004;306(5698):990-995.DOI: 10.1126/science.1099993.
Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R. Autophagy in liver diseases. J Hepatol. 2010;53(6):1123-1134.DOI: 10.1016/j.jhep.2010.07.006.
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107-132.DOI: 10.1146/annurev-cellbio-092910-154005.
Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology. 2014;59(4):1366-1380.DOI: 10.1002/hep.26667.
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131-1135.DOI: 10.1038/nature07976.
Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3): 313-326.DOI: 10.1016/j.cell.2010.01.028.
Hinds TD, Jr., Creeden JF, Gordon DM, Stec DF, Donald MC, Stec DE. Bilirubin nanoparticles reduce diet-induced hepatic steatosis, improve fat utilization, and increase plasma beta-hydroxybutyrate. Front Pharmacol. 2020;11:594574.DOI: 10.3389/fphar.2020.594574.
Stocker R, Glazer AN, Ames BN. Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci U S A. 1987;84(16):5918-5922.DOI: 10.1073/pnas.84.16.5918.
Wu TW, Fung KP, Yang CC. Unconjugated bilirubin inhibits the oxidation of human low density lipoprotein better than Trolox. Life Sci. 1994;54(25):PL477-PL481.DOI: 10.1016/0024-3205(94)90140-6.
Landerer S, Kalthoff S, Paulusch S, Strassburg CP. A Gilbert syndrome-associated haplotype protects against fatty liver disease in humanized transgenic mice. Sci Rep. 2020;10(1):8689,1-8.DOI: 10.1038/s41598-020-65481-4.
Mao Y, Cheng J, Yu F, Li H, Guo C, Fan X. Ghrelin attenuated lipotoxicity via autophagy induction and nuclear factor-kappaB inhibition. Cell Physiol Biochem. 2015;37(2):563-576.DOI: 10.1159/000430377.
Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 2006;79(11):1100-1107.DOI: 10.1016/j.lfs.2006.03.021.
Orio L, Alen F, Pavon FJ, Serrano A, Garcia-Bueno B. Oleoylethanolamide, neuroinflammation, and alcohol abuse. Front Mol Neurosci. 2018;11:490,1-21.DOI: 10.3389/fnmol.2018.00490.
Adin CA. Bilirubin as a therapeutic molecule: challenges and opportunities. Antioxidants (Basel). 2021;10(10):1536,1-16.DOI: 10.3390/antiox10101536.
Lin JP, O’Donnell CJ, Schwaiger JP, Cupples LA, Lingenhel A, Hunt SC, et al. Association between the UGT1A1* 28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study. Circulation. 2006;114(14):1476-1481.DOI: 10.1161/CIRCULATIONAHA.106.633206.
Altunkaynak BZ, Ozbek E. Overweight and structural alterations of the liver in female rats fed a high-fat diet: a stereological and histological study. Turk J Gastroenterol. 2009;20(2):93-103.PMID: 19530041.
Karbalay-Doust S, Noorafshan A. Stereological study of the effects of nandrolone decanoate on the mouse liver. Micron. 2009;40(4):471-475.DOI: 10.1016/j.micron.2008.12.006.
Marcos R, Monteiro RA, Rocha E. The use of design-based stereology to evaluate volumes and numbers in the liver: a review with practical guidelines. J Anat. 2012;220(4):303-317.DOI: 10.1111/j.1469-7580.2012.01475.x.
Namavar MR, Ghalavandi M, Bahmanpour S. The effect of glutathione and buserelin on the stereological parameters of the hypothalamus in the cyclophosphamide-treated mice. J Chem Neuroanat. 2020;110:101871,1-8.DOI: 10.1016/j.jchemneu.2020.101871.
von Bartheld CS. Distribution of particles in the z-axis of tissue sections: relevance for counting methods. Neuroquantology. 2011;10(1):66-75.PMID: 23874137.
Liang W, Menke AL, Driessen A, Koek GH, Lindeman JH, Stoop R, et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One. 2014;9(12):e115922,1-17.DOI: 10.1371/journal.pone.0115922.
Vakili O, Borji M, Saffari-Chaleshtori J, Shafiee SM. Ameliorative effects of bilirubin on cell culture model of non-alcoholic fatty liver disease. Mol Biol Rep. 2023;50(5):4411-4422.DOI: 10.1007/s11033-023-08339-y.
Maleki MH, Nadimi E, Vakili O, Tavakoli R, Taghizadeh M, Dehghanian A, et al. Bilirubin improves renal function by reversing the endoplasmic reticulum stress and inflammation in the kidneys of type 2 diabetic rats fed high-fat diet. Chem Biol Interact. 2023;378:110490.DOI: 10.1016/j.cbi.2023.110490.
Niknam M, Maleki MH, Khakshournia S, Rasouli M, Vakili O, Shafiee SM. Bilirubin, an endogenous antioxidant that affects p53 protein and its downstream apoptosis/autophagy-related genes in LS180 and SW480 cell culture models of colorectal cancer. Biochem Biophys Res Commun. 2023;672:161-167.DOI: 10.1016/j.bbrc.2023.06.050.
Novak P, Jackson AO, Zhao GJ, Yin K. Bilirubin in metabolic syndrome and associated inflammatory diseases: new perspectives. Life Sci. 2020;257:118032,1-6.DOI: 10.1016/j.lfs.2020.118032.
Tian J, Zhong R, Liu C, Tang Y, Gong J, Chang J, et al. Association between bilirubin and risk of non-alcoholic fatty liver disease based on a prospective cohort study. Sci Rep. 2016;6(1):31006,1-9.DOI: 10.1038/srep31006.
Wu B, Wu Y, Tang W. Heme catabolic pathway in inflammation and immune disorders. Front Pharmacol. 2019;10:825,1-15.DOI: 10.3389/fphar.2019.00825.
Stec DE, John K, Trabbic CJ, Luniwal A, Hankins MW, Baum J, et al. Bilirubin binding to PPARα inhibits lipid accumulation. PLoS One. 2016;11(4):e0153427,1-17.DOI: 10.1371/journal.pone.0153427.
Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010;11(6):467-478.DOI: 10.1016/j.cmet.2010.04.005.
Codogno P, Meijer AJ. Autophagy: a potential link between obesity and insulin resistance. Cell Metab. 2010;11(6):449-451.DOI: 10.1016/j.cmet.2010.05.006.
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311-326.DOI: 10.1016/j.cmet.2009.02.002.
Zhang X, Deng Y, Xiang J, Liu H, Zhang J, Liao J, et al. Galangin improved non-alcoholic fatty liver disease in mice by promoting autophagy. Drug Des Devel Ther. 2020;14:3393-3405.DOI: 10.2147/DDDT.S258187.
Sinha RA, Rajak S, Singh BK, Yen PM. Hepatic lipid catabolism via PPAR alpha-lysosomal crosstalk. Int J Mol Sci. 2020;21(7):2391,1-13.DOI: 10.3390/ijms21072391.
Kaur S, Changotra H. The beclin 1 interactome: modification and roles in the pathology of autophagy-related disorders. Biochimie. 2020;175:34-49.DOI: 10.1016/j.biochi.2020.04.025.
Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res. 2010;20(7):748-462.DOI: 10.1038/cr.2010.82.
Zhong P, Sun DM, Wu DH, Li TM, Liu XY, Liu HY. Serum total bilirubin levels are negatively correlated with metabolic syndrome in aged Chinese women: a community-based study. Braz J Med Biol Res. 2017;50(2):e5252,1-6.DOI: 10.1590/1414-431X20165252.
Xu ZJ, Fan JG, Ding XD, Qiao L, Wang GL. Characterization of high-fat, diet-induced, non-alcoholic steatohepatitis with fibrosis in rats. Dig Dis Sci. 2010;55(4):931-940.DOI: 10.1007/s10620-009-0815-3.
Takahashi Y, Fukusato T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2014;20(42):15539-15548.DOI: 10.3748/wjg.v20.i42.15539.
Salomone F, Li Volti G, Rosso C, Grosso G, Bugianesi E. Unconjugated bilirubin, a potent endogenous antioxidant, is decreased in patients with non-alcoholic steatohepatitis and advanced fibrosis. J Gastroenterol Hepatol. 2013;28(7):1202-1208.DOI: 10.1111/jgh.12155.
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology. 2023;78(2):649-669.DOI: 10.1097/HEP.0000000000000207.
Schepis F, Turco L, Bianchini M, Villa E. Prevention and management of bleeding risk related to invasive procedures in cirrhosis. Semin Liver Dis. 2018;38(3):215-229.DOI: 10.1055/s-0038-1660523.
Preguica I, Alves A, Nunes S, Fernandes R, Gomes P, Viana SD, et al. Diet-induced rodent models of obesity-related metabolic disorders-a guide to a translational perspective. Obes Rev. 2020;21(12):e13081,1-29.DOI: 10.1111/obr.13081.
Schroeder SM, Matsukuma KE, Medici V. Wilson disease and the differential diagnosis of its hepatic manifestations: a narrative review of clinical, laboratory, and liver histological features. Ann Transl Med. 2021;9(17):1394,1-16.DOI: 10.21037/atm-21-2264.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.