Mesoporous silica and alumina nanoparticles to improve drug delivery of pioglitazone on diabetic type 1 nephropathy in rats
Abstract
Background and purpose: Diabetic nephropathy leads to end-stage renal disease. The present study aimed to evaluate the prophylactic effect of pioglitazone-loaded mesoporous silica and alumina scaffold on renal function and the underlying mechanisms in streptozotocin-induced diabetic rats.
Experimental approach: The mesoporous nanoparticles were synthesized by chemical methods from tetraethylorthosilicate and aluminum isopropoxide and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The soaking method was applied to load pioglitazone into the mesoporous silica and alumina. Subsequently, the most capable formulation was evaluated for lipid profile, blood glucose, renal function biomarkers, malondialdehyde, and kidney histopathological changes in diabetic rats.
Findings/Results: Pioglitazone loaded in the mesoporous included a superior release of about 80%. No interaction was observed in Fourier transform infrared spectroscopy and X-ray diffraction was shown crystalline. Scanning electron microscopy showed the size of the nanometer in the range of 100 - 300 nm. Mesoporous silica containing the drug significantly decreased urinary parameters, triglycerides, low-density lipoprotein, blood urea nitrogen, blood glucose, malondialdehyde, and creatinine. In addition, it showed increased high-density lipoprotein, significantly. The renal histopathological changes indicated improvement compared with the untreated diabetic group.
Conclusion and implications: It was concluded that the mesoporous was potent to serve as a promising drug carrier and a platform aimed at the delivery of poorly water-soluble drugs for improving oral bioavailability. Furthermore, it has the potential to provide a beneficial effect on the changes in diabetic parameters.
Keywords
Full Text:
PDFReferences
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157: 107843,1-10.DOI: 10.1016/j.diabres.2019.107843.
Johansen KL, Chertow GM, Foley RN, Gilbertson DT, Herzog CA, Ishani A, et al. US renal data system 2020 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2021;77(4):A7-A8.DOI: 10.1053/j.ajkd.2021.01.002.
Widowati W, Tjokropranoto R, Onggowidjaja P, Kusuma HSW, Wijayanti CR, Marthania M, et al. Protective effect of yacon leaves extract (Smallanthus sonchifolius (Poepp.) H. Rob) through antifibrosis, anti-inflammatory, and antioxidant mechanisms toward diabetic nephropathy. Res Pharm Sci. 2023;18(3):336-345. DOI: 10.4103/1735-5362.371589.
Choudhury D, Tuncel M, Levi M. Diabetic nephropathy-a multifaceted target of new therapies. Discov Med. 2010;10(54):406-415.PMID: 21122472.
Troncoso Brindeiro CM, Fallet RW, Lane PH, Carmines PK. Potassium channel contributions to afferent arteriolar tone in normal and diabetic rat kidney. Am J Physiol Renal Physiol. 2008;295(1):F171-F178.DOI: 10.1152/ajprenal.00563.2007.
Lebovitz HE. Thiazolidinediones: the forgotten diabetes medications. Curr Diab Rep. 2019;19(12):151,1-3.DOI: 10.1007/s11892-019-1270-y.
Motoki T, Kurobe H, Hirata Y, Nakayama T, Kinoshita H, Rocco KA. PPAR-γ agonist attenuates inflammation in aortic aneurysm patients. Gen Thorac Cardiovasc Surg. 2015; 63:565–571. DOI: 10.1007/s11748-015-0576-1.
Bahriz A, Ismaiel Y, Abdelhameed A, Elsayed F. Effect of sitagliptin, pioglitazone and dapagliflozine on myocardial infarction induced experimentally in diabetic rats. Benha Med J. 2021;38(Academic issue):147-165.DOI: 10.21608/BMFJ.2021.146796.
Maciejewska-Skrendo A, Massidda M, Tocco F, Leźnicka K. The influence of the differentiation of genes encoding peroxisome proliferator-activated receptors and their coactivators on nutrient and energy metabolism. Nutrients. 2022;14(24):5378, 1-28.DOI: 10.3390/nu14245378.
Faiz S, Arshad S, Kamal Y, Imran S, Asim MH, Mahmood A, et al. Pioglitazone-loaded nanostructured lipid carriers: in-vitro and in-vivo evaluation for improved bioavailability. J Drug Deliv Sci Technol. 2023;79:104041.DOI: 10.1016/j.jddst.2022.104041.
Varshosaz J, Ahmadipour S, Tabbakhian M, Ahmadipour S. Nanocrystalization of pioglitazone by precipitation method. Drug Res. 2018;68(10):576-583.DOI: 10.1055/a-0591-2506.
Wang Z, Du H, Zhao Y, Ren Y, Ma C, Chen H, et al. Response to pioglitazone in non-alcoholic fatty liver disease patients with vs. without type 2 diabetes: a meta-analysis of randomized controlled trials. Front Endocrinol. 2023;14:1111430,1-11. DOI: 10.3389/fendo.2023.1111430.
Mirzaei M, Babaei Zarch M, Darroudi M, Sayyadi K, Keshavarz ST, Sayyadi J, et al. Silica mesoporous structures: effective nanocarriers in drug delivery and nanocatalysts. Appl Sci. 2020;10(21):7533,1-36. DOI: 10.3390/app10217533.
Hu Y, Wang J, Zhi Z, Jiang T, Wang S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J Colloid Interface Sci. 2011;363(1):410-417.DOI: 10.1016/j.jcis.2011.07.022.
Mellaerts R, Aerts CA, Van Humbeeck J, Augustijns P, Van den Mooter G, Martens JA. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem Commun. 2007;13:1375-1377.DOI: 10.1039/B616746b.
Varshosaz J, Dayani L, Chegini SP, Minaiyan M. Production of a new platform based on fumed and mesoporous silica nanoparticles for enhanced solubility and oral bioavailability of raloxifene HCl. IET Nanobiotechnol. 2019;13(4):392-399.DOI: 10.1049/iet-nbt.2018.5252.
Grant SM. Polymer templating synthesis, adsorption and structural properties of alumina-based ordered mesoporous materials. Ph.D. [Thesis]. Kent: Kent State University , 2011. Available online: http://rave.ohiolink.edu/etdc/view?acc_num=kent1317593306 (accessed on 31 January 2023).
Chen B, Wang Z, Quan G, Peng X, Pan X, Wang R, et al. In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation. Int J Nanomedicine. 2012;7:199-209.DOI: 10.2147/IJN.S26763.
Ahmadipour S, Varshosaz J, Hashemibeni B, Safaeian L, Manshaei M. Polyhedral oligomeric silsesquioxane /platelets rich plasma/gelrite-based hydrogel scaffold for bone tissue engineering. Curr Pharm Des. 2020;26(26):3147-3160.DOI: 10.2174/1381612826666200311124732.
Ebaid H, Bashandy SAE, Abdel-Mageed AM, Al-Tamimi J, Hassan I, Alhazza IM. Folic acid and melatonin mitigate diabetic nephropathy in rats via inhibition of oxidative stress. Nutr Metab (Lond). 2020;17(1):1-14.DOI: 10.1186/s12986-019-0419-7.
Furman BL. Streptozotocin‐induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2021;70(5):47,1-5.DOI: 10.1002/0471141755.ph0547s70.
Le TT, Elzhry Elyafi AK, Mohammed AR, Al-Khattawi A. Delivery of poorly soluble drugs via mesoporous silica: impact of drug overloading on release and thermal profiles. Pharmaceutics. 2019;11(6):269,1-16.DOI: 10.1016/j.sjbs.2016.01.010.
More MP, Ganguly PR, Pandey AP, Dandekar PP, Jain RD, Patil PO, et al. Development of surface engineered mesoporous alumina nanoparticles: drug release aspects and cytotoxicity assessment. IET Nanobiotechnol. 2017;11(6):661-668.DOI: 10.1049/iet-nbt.2016.0225.
Slowing II, Trewyn BG, Giri S, Lin VS. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater. 2008;17(8):1225-1236.DOI: 10.1002/adfm.200601191.
Zhao Y, Sun X, Zhang G, Trewyn BG. Dendrimer-templated mesoporous silica nanoparticles for pH-responsive drug delivery. Chem Commun (Camb). 2011;47(12):3332-3334. DOI: 10.1039/c0cc05188k.
Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278-1288.DOI: 10.1016/j.addr.2008.03.012.
Rosenholm JM, Sahlgren C, Lindén M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles-opportunities & challenges. Nanoscale. 2010;2(10):1870-1883.DOI:10.1039/c0nr00156b.
Vazquez NI, Gonzalez Z, Ferrari B, Castro Y. Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications. Bol Soc Esp Ceram Vidr. 2017;56(3):139-145.DOI: 10.1016/j.bsecv.2017.03.002.
Vaisman L, Marom G, Wagner HD. Dispersions of surface‐modified carbon nanotubes in water‐soluble and water‐insoluble polymers. Adv Funct Mater. 2006;16(3):357-363.DOI: 10.1002/adfm.200500142.
Luo GF, Chen WH, Liu Y, Lei Q, Zhuo RX, Zhang XZ. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci Rep. 2014;4(1):1-10.DOI: 10.1038/srep06064.
Das D, Yang Y, O’Brien JS, Breznan D, Nimesh S, Bernatchez S, et al. Synthesis and physicochemical characterization of mesoporous nanoparticles. J Nanomater. 2014;2014:62,1-12.DOI: 10.1155/2014/176015.
Ko GJ, Kang YS, Han SY, Lee MH, Song HK, Han KH, et al. Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant. 2008;23(9):2750-2760.DOI: 10.1093/ndt/gfn157.
Hirasawa Y, Matsui Y, Yamane K, Yabuki SY, Kawasaki Y, Toyoshi T, et al. Pioglitazone improves obesity type diabetic nephropathy: relation to the mitigation of renal oxidative reaction. Exp Anim. 2008;57(5):423-432.DOI: 10.1538/expanim.57.423.
Yamada S, Inaba M. Potassium metabolism and management in patients with CKD. Nutrients. 2021;13(6):1751,1-19.DOI: 10.3390/nu13061751.
Afzal S, Sattar MA, Johns EJ, Eseyin OA. Renoprotective and haemodynamic effects of adiponectin and peroxisome proliferator-activated receptor agonist, pioglitazone, in renal vasculature of diabetic spontaneously hypertensive rats. PloS One. 2020;15(11):e0229803,1-22.DOI: 10.1371/journal.pone.0229803.
Manzano M, Colilla M, Vallet-Regí M. Drug delivery from ordered mesoporous matrices. Expert Opin Drug Deliv. 2009;6(12):1383-1400.DOI: 10.1517/17425240903304024.
Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm. 2012;9(3):505-513.DOI: 10.1021/mp200287c.
Colilla M, Manzano M, Izquierdo-Barba I, Vallet-Regí M, Boissiére C, Sanchez C. Advanced drug delivery vectors with tailored surface properties made of mesoporous binary oxides submicronic spheres. Chem Mater. 2010;22(5):1821-1830. DOI: 10.1021/cm9033484.
Karabas MK, Ayhan M, Guney E, Serter M, Meteoglu I. The effect of pioglitazone on antioxidant levels and renal histopathology in streptozotocin-induced diabetic rats. ISRN Endocrinol. 2013;2013:858690,1-8.DOI: 10.1155/2013/858690.
Rao PS, Mohan GK. In vitro alpha-amylase inhibition and in vivo antioxidant potential of Momordica dioica seeds in streptozotocin-induced oxidative stress in diabetic rats. Saudi J Biol Sci. 2017;24(6):1262-1267.DOI: 10.1016/j.sjbs.2016.01.010.
Attallah MI, Ibrahim AN, Elnaggar RA. Effects of pioglitazone and irbesartan on endothelial dysfunction on experimentally streptozotocin-induced diabetic nephropathy in rats. Egypt J Basic Clin Pharmacol. 2018;8(3):1-14.DOI: 10.11131/2018/101368.
Cao YH, Kuang L, Dai W, XingY, Ye SD. Effect of pioglitazone on the expression of renal tissue nephrin in STZ-induced diabetic rats. Int J Clin Exp Pathol. 2016;9(2):1676-1683.DOI: 10.1371/journal.pone.0264129.
Peng XH, Liang PY, Ou SJ, Zu XB. Protective effect of pioglitazone on kidney injury in diabetic rats. Asian Pac J Trop Med. 2014;7(10):819-822.DOI: 10.1016/S1995-7645(14)60143-7.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.