The effect of Dracocephalum subcapitatum hydroalcoholic extract on dexamethasone-induced hyperlipidemic rats
Abstract
Background and purpose: Recent data show the antihyperlipidemic activities of some plants belonging to the genus Dracocephalum. In this study, the effects of hydroalcoholic extract of D. subcapitatum (O. Kuntze) Lipsky aerial parts were evaluated in a model of hyperlipidemia induced by dexamethasone.
Experimental approach: The extract was prepared by maceration method and its total phenolic content was determined. Seven groups of 6 Wistar rats were used as follows: group 1 (normal control) received vehicle; group 2 (extract control) treated only with 200 mg/kg D. subcapitatum; group 3 (hyperlipidemia control) received dexamethasone (10 mg/kg/day, subcutaneously); group 4 (reference) received dexamethasone and atorvastatin (40 mg/kg, orally), and groups 5-7 (test groups) received dexamethasone and simultaneously treated orally with 50, 100, or 200 mg/kg D. subcapitatum. All treatments were done for 1 week. Serum lipid profile, fasting blood glucose, malondialdehyde concentration, and liver histopathology were examined.
Findings/Results: Total phenolic content was 77.34 ± 4.9 mg/g as gallic acid equivalent. Treatment with D. subcapitatum (200 mg/kg) meaningfully declined triglycerides, total cholesterol, low-density lipoprotein, very low-density lipoprotein, blood glucose, alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels, and alleviated hepatic steatosis in dexamethasone-induced dyslipidemic rats.
Conclusion and implications: Findings of the current study suggest that D. subcapitatum may be effective in the management of hyperlipidemia. Further studies are necessary to determine the clinical efficacy of this treatment and to understand the underlying mechanisms responsible for its ability to lower lipid levels.
Keywords
Full Text:
PDFReferences
Shattat GF. A review article on hyperlipidemia: types, treatments and new drug targets. Biomed Pharmacol J. 2014;7(2):399-409.DOI: 10.13005/bpj/504.
Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5(8):927-946.PMCID: PMC4258672.
Aguilar-Salinas CA, Gómez-Díaz RA, Corral P. New therapies for primary hyperlipidemia. J Clin Endocrinol Metab. 2022;107(5):1216-1224.DOI: 10.1210/clinem/dgab876.
Mal GS, Smakhtina AM. Secondary hyperlipidemia: definition, phenotypes, and inducing factors. Int Heart Vasc Dis. 2021;9(32):34-40.DOI: 10.24412/2311-1623-2021-32-34-40.
Rizzo M, Kotur-Stevuljevic J, Berneis K, Spinas G, Rini GB, Jelic-Ivanovic Z, et al. Atherogenic dyslipidemia and oxidative stress: a new look. Transl Res. 2009;153(5):217-223.DOI: 10.1016/j.trsl.2009.01.008.
Mesripour A, Rafieian-Kopaei M, Bahrami B. The effects of Anethum graveolens essence on scopolamine-induced memory impairment in mice. Res Pharm Sci. 2016;11(2):145-151.PMCID: PMC4852659.
Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, et al. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front Pharmacol. 2020;11:422. DOI: 10.3389/fphar.2020.00422.
Lazarević P, Lazarević M, Krivošej Z, Stevanović V. On the distribution of Dracocephalum ruyschiana (Lamiaceae) in the Balkan Peninsula. Phytol Balc. 2009;15(2):175-179.
Hesami Moghaddam H, Emadi F, Esmaeil-Jamaat E, Kamalinejad M, Alijaniha F. Plants from genus Dracocephalum in Iran: pharmacology and phytochemistry overview. Curr Drug Discov Technol. 2022;19(5):e280422204213.DOI: 10.2174/1570163819666220428123059.
Zeng Q, Jin H, Qin JJ, Fu JJ, Hu XJ, Liu JH, et al. Chemical constituents of plants from the genus Dracocephalum. Chem Biodivers. 2010;7(8):1911-1929.DOI: 10.1002/cbdv.200900188.
Saeidnia S, Gohari AR, Ito M, Kiuchi F, Honda G. Bioactive constituents from Dracocephalum Subcapitatum (O. Kuntze) lipsky. Z Naturforsch C J Biosci. 2005;60(1-2):22-24.DOI: 10.1515/znc-2005-1-204.
Saeidnia S, Gohari AR, Ito M, Honda G, Hadjiakhoondi A. Phylogenetic analysis of Badrashbu species using DNA polymorphism. J Med Plants. 2005;4(15):66-72.
Unnikrishnan MK, Veerapur V, Nayak Y, Mudgal PP, Mathew G. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoids. In: Watson RR, Preedy VR, Zibadi S. Polyphenols in human health and disease. Academic Press; 2014. pp. 143-161.DOI: 10.1016/b978-0-12-398456-2.00013-x.
Goto T, Takahashi N, Hirai S, Kawada T. Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Res. 2010;2010:1-9.DOI: 10.1155/2010/483958.
Teymuori M, Yegdaneh A, Rabbani M. Effects of Piper nigrum fruit and Cinnamum zeylanicum bark alcoholic extracts, alone and in combination, on scopolamine-induced memory impairment in mice. Res Pharm Sci. 2021;16(5):474-481. DOI: 10.4103/1735-5362.323914.
Feghhi-Najafabadi S, Safaeian L, Zolfaghari B. In vitro antioxidant effects of different extracts obtained from the leaves and seeds of Allium ampeloprasum subsp. persicum. J HerbMed Pharmacol. 2019;8(3):256-260.DOI: 10.15171/jhp.2019.37.
Kumar VRS, Inamdar MN, Nayeemunnisa, Viswanatha GL. Protective effect of lemongrass oil against dexamethasone induced hyperlipidemia in rats: possible role of decreased lecithin cholesterol acetyl transferase activity. Asian Pac J Trop Med. 2011;4(8):658-660.DOI: 10.1016/S1995-7645(11)60167-3.
Momi S, Impagnatiello F, Guzzetta M, Caracchini R, Guglielmini G, Olivieri R, et al. NCX 6560, a nitric oxide-releasing derivative of atorvastatin, inhibits cholesterol biosynthesis and shows anti-inflammatory and anti-thrombotic properties. Eur J Pharmacol. 2007;570(1-3):115-124.DOI: 10.1016/j.ejphar.2007.05.014.
Safary A, Zadhoush F, Yegdaneh A, Hosseini-Sharifabad A, Talebi A, Sadraei H. The Effect of Dracocephalum kotschyi hydroalcoholic extract on biochemical and hematological parameters in rat. J Isfahan Med Sch. 2022;40(669):278-287.
Pragda SS, Kuppast IJ, Mankani KL, Ramesh L. Evaluation of antihyperlipidemic activity of leaves of Portulaca oleracea Linn against dexamethasone induced hyperlipidemia in rats. Int J Pharm Pharm Sci. 2012;4(4):279-283.
Ross IL, Marais AD. The influence of glucocorticoids on lipid and lipoprotein metabolism and atherosclerosis. S Afr Med J. 2014;104(10):671-674.DOI: 10.7196/samj.7979.
Wang JC, Gray NE, Kuo T, Harris CA. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci. 2012;2(1):1-9. DOI: 10.1186/2045-3701-2-19.
Du WW, Liu F, Shan SW, Ma XC, Gupta S, Jin T, et al. Inhibition of dexamethasone-induced fatty liver development by reducing miR-17-5p levels. Mol Ther. 2015;23(7):1222-1233.DOI: 10.1038/mt.2015.64.
Wang M. The role of glucocorticoid action in the pathophysiology of the metabolic syndrome. Nutr Meta. 2005;2(1):1-14.DOI: 10.1186/1743-7075-2-3
Woods CP, Hazlehurst JM, Tomlinson JW. Glucocorticoids and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol. 2015;154:94-103. DOI: 10.1016/j.jsbmb.2015.07.020
Arnaldi G, Scandali VM, Trementino L, Cardinaletti M, Appolloni G, Boscaro M. Pathophysiology of dyslipidemia in Cushing’s syndrome. Neuroendocrinology. 2010;92:86-90. DOI: 10.1159/000314213.
Jiao T, Yao X, Zhao Y, Zhou Y, Gao Y, Fan S, et al. Dexamethasone-induced liver enlargement is related to PXR/YAP activation and lipid accumulation but not hepatocyte proliferation. Drug Metab Dispos. 2020;48(9):830-839. DOI: 10.1124/dmd.120.000061.
Jackson ER, Kilroy C, Joslin DL, Schomaker SJ, Pruimboom-Brees I, Amacher DE. The early effects of short-term dexamethasone administration on hepatic and serum alanine aminotransferase in the rat. Drug Chem Toxicol. 2008;31(4):427-445.DOI: 10.1080/01480540802390247.
Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin North Am. 2014;43(1):75-102. DOI: 10.1016/j.ecl.2013.10.005.
Bjelaković G, Beninati S, Pavlović D, Kocić G, Jevtović T, Kamenov Β, et al. Glucocorticoids and oxidative stress. J Basic Clin Physiol Pharmacol. 2007;18(2):115-127.DOI: 10.1515/JBCPP.2007.18.2.115.
Sajjadi SE, Movahedian Atar A, Yektaian A. Antihyperlipidemic effect of hydroalcoholic extract, and polyphenolic fraction from Dracocephalum kotschyi Boiss. Pharm Acta Helv. 1998;73(3):167-170.DOI: 10.1016/s0031-6865(98)00016-8.
Aslian S, Yazdanparast R. Hypolipidemic activity of Dracocephalum kotschyi involves FOXO1 mediated modulation of PPARγ expression in adipocytes. Lipids Health Dis. 2018;17(1):1-9.DOI: 10.1186/s12944-018-0893-3.
Pouraboli I, Nazari S, Sabet N, Sharififar F, Jafari M. Antidiabetic, antioxidant, and antilipid peroxidative activities of Dracocephalum polychaetum shoot extract in streptozotocin-induced diabetic rats: in vivo and in vitro studies. Pharm Biol. 2016;54(2):272-278.DOI: 10.3109/13880209.2015.1033561.
Song E, Choi J, Gwon H, Lee KY, Choi SG, Islam MA, et al. Phytochemical profile and antioxidant activity of Dracocephalum moldavica L. seed extracts using different extraction methods. Food Chem. 2021;350:128531,1-27.DOI: 10.1016/j.foodchem.2020.128531.
Jing L, Zhang Y, Fan S, Gu M, Guan Y, Lu X, et al. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity. Eur J Pharmacol. 2013;715(1-3):46-55. DOI: 10.1016/j.ejphar.2013.06.022.
Kahksha, Alam O, Al-Keridis LA, Khan J, Naaz S, Alam A, et al. Evaluation of antidiabetic effect of luteolin in STZ induced diabetic rats: molecular docking, molecular dynamics, in vitro and in vivo studies. J Funct Biomater. 2023;14(3):126,1-16. DOI: 10.3390/jfb14030126.
Hamed ZS, Altaweel A, Ahmed K KA, Taqa GAA. Evaluation of the antihyperlipidemic effect of apigenin flavonoid in mice. Iraqi J Vet Sci. 2022;36(2):279-283. DOI: 10.33899/IJVS.2021.130008.1718.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.