Moringa oleifera leaf extract suppresses TIMM23 and NDUFS3 expression and alleviates oxidative stress induced by Aβ1-42 in neuronal cells via activation of Akt
Abstract
Background and purpose: Oxidative stress plays an important role in Alzheimer’s disease (AD) pathogenesis. Moringa oleifera leaf (MOL) extract has been shown to have antioxidant activities. Here, we studied the antioxidative and anti-apoptotic effects of water-soluble MOL extract in an amyloid beta (Aβ)-induced oxidative stress model of AD.
Experimental approach: The effect of amyloid beta (Aβ)1-42 and MOL extract on differentiated SH-SY5Y cell viability was assessed by MTT assay. Cells were treated with Aβ1-42, MOL extract, or MOL extract followed by Aβ1-42. The mitochondrial membrane potential (ΔΨm) and the reactive oxygen species (ROS) were evaluated by flow cytometry and dihydroethidium (DHE) assay, respectively. Western blotting was used to assess the expression of mitochondrial proteins TIMM23 and NDUFS3, apoptosis-related proteins Bax, Bcl-2, and cleaved caspase-3 along with fluorescence analysis of caspase-3/7, and Akt phosphorylation.
Findings/Results: MOL extract pretreatment at 25, 50, and 100 µg/mL prevented ΔΨm reduction. At 100-µg/mL, MOL extract decreased TIMM23 and NDUFS3 proteins and DHE signals in Aβ1-42-treated cells. MOL extract pretreatment (25, 50, and 100 µg/mL) also alleviated the apoptosis indicators, including Bax, caspase-3/7 intensity, and cleaved caspase-3, and increased Bcl-2 levels in Aβ1-42-treated cells, consistent with a reduction in the number of apoptotic cells. The protective effects of MOL extract were possibly mediated through Akt activation, evidenced by increased Akt phosphorylation.
Conclusion and implications: The neuroprotective effect of MOL extract could be mediated via the activation of Akt, leading to the suppression of oxidative stress and apoptosis in an Aβ1-42 model of AD.
Keywords
Full Text:
PDFReferences
Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener. 2018;7(1):2,1-7. DOI: 10.1186/s40035-018-0107-y.
Xu T, Niu C, Zhang X, Dong M. β-Ecdysterone protects SH-SY5Y cells against β-amyloid-induced apoptosis via c-Jun N-terminal kinase-and Akt-associated complementary pathways. Lab Invest. 2018;98(4):489-499. DOI: 10.1038/s41374-017-0009-0.
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther. 2019;4(1):29,1-22. DOI: 10.1038/s41392-019-0063-8.
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14:5541, 1-14. DOI: 10.2147/IJN.S200490.
Albensi BC. Dysfunction of mitochondria: implications for Alzheimer's disease. Int Rev Neurobiol. 2019;145:13-27. DOI: 10.1016/bs.irn.2019.03.001.
Bogorodskiy A, Okhrimenko I, Burkatovskii D, Jakobs P, Maslov I, Gordeliy V, et al. Role of mitochondrial protein import in age-related neurodegenerative and cardiovascular diseases. Cells. 2021;10(12):3528,1-22. DOI: 10.3390/cells10123528.
Calvo-Rodriguez M, Bacskai BJ. Mitochondria and calcium in Alzheimer’s disease: from cell signaling to neuronal cell death. Trends Neurosci. 2021;44(2):136-151. DOI: 10.1016/j.tins.2020.10.004.
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between mitochondrial dysfunction and neurotransmission failure in Alzheimer’s disease. Aging Dis. 2020;11(5):1291-1316. DOI: 10.14336/AD.2019.1125.
Yu MS, Lai SW, Lin KF, Fang JN, Yuen WH, Chang RCC. Characterization of polysaccharides from the flowers of Nerium indicum and their neuroprotective effects. Int J Mol Med. 2004;14(5):917-924. DOI: 10.3892/ijmm.14.5.917.
Ho YS, Yu MS, Lai CSW, So KF, Yuen WH, Chang RCC. Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on β-amyloid peptide neurotoxicity. Brain Res. 2007;1158:123-134. DOI: 10.1016/j.brainres.2007.04.075.
Shal B, Ding W, Ali H, Kim YS, Khan S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer's disease. Front Pharmacol. 2018;9:548,1-17.
DOI: 10.3389/fphar.2018.00548.
González-Burgos E, Ureña-Vacas I, Sánchez M, Gómez-Serranillos MP. Nutritional value of Moringa oleifera Lam. leaf powder extracts and their neuroprotective effects via antioxidative and mitochondrial regulation. Nutrients. 2021;13(7):2203,1-15. DOI: 10.3390/nu13072203.
Gupta S, Jain R, Kachhwaha S, Kothari S. Nutritional and medicinal applications of Moringa oleifera Lam.—Review of current status and future possibilities. J Herb Med. 2018;11:1-11. DOI: 10.1016/j.hermed.2017.07.003.
Perez M, Maiguy-Foinard A, Barthélémy C, Décaudin B, Odou P. Particulate matter in injectable drugs: evaluation of risks to patients. Pharm Technol Hosp Pharm. 2016;1(2):91-103.DOI: 10.1515/pthp-2016-0004.
Lajoie L, Fabiano-Tixier AS, Chemat F. Water as green solvent: methods of solubilisation and extraction of natural products-past, present and future solutions. Pharmaceuticals (Basel). 2022;15(12):1507,1-22. DOI: 10.3390/ph15121507.
Jung IL. Soluble extract from Moringa oleifera leaves with a new anticancer activity. PloS one. 2014;9(4):e95492,1-10. DOI: 10.1371/journal.pone.0095492.
Senthilkumar A, Karuvantevida N, Rastrelli L, Kurup SS, Cheruth AJ. Traditional uses, pharmacological efficacy, and phytochemistry of Moringa peregrina (Forssk.) Fiori. a review. Front Pharmacol. 2018;9:465,1-17. DOI: 10.3389/fphar.2018.00465.
Singh AK, Rana HK, Tshabalala T, Kumar R, Gupta A, Ndhlala AR, et al. Phytochemical, nutraceutical and pharmacological attributes of a functional crop Moringa oleifera Lam: an overview. S Afr J Bot. 2020;129:209-220. DOI: 10.1016/j.sajb.2019.06.017.
Mahaman YAR, Huang F, Wu M, Wang Y, Wei Z, Bao J, et al. Moringa oleifera alleviates homocysteine-induced Alzheimer’s disease-like pathology and cognitive impairments. J Alzheimers Dis. 2018;63(3):1141-1159. DOI: 10.3233/JAD-180091.
Dikalov SI, Harrison DG. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal. 2014;20(2):372-382. DOI: 10.1089/ars.2012.4886.
Zhang L, Guo X, Chu J, Zhang X, Yan Z, Li Y. Potential hippocampal genes and pathways involved in Alzheimer’s disease: a bioinformatic analysis. Genet Mol Res. 2015;14(2):7218-7232. DOI: 10.4238/2015.June.29.15.
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener. 2020;15(1):30,1-22. DOI: 10.1186/s13024-020-00376-6.
Bhatia V, Sharma S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease. J Neurol Sci. 2021;421:117253,1-26. DOI: 10.1016/j.jns.2020.117253.
Atri A. Current and future treatments in Alzheimer's disease. Semin Neurol. 2019;39(02):227-240. DOI: 10.1055/s-0039-1678581.
Rahman MA, Rahman MH, Biswas P, Hossain MS, Islam R, Hannan MA, et al. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants (Basel). 2020;10(1):23,1-18. DOI: 10.3390/antiox10010023.
Nair DA, James TJ, Sreelatha SL, Kariyil BJ, Nair SN. Moringa oleifera (Lam.): a natural remedy for ageing? Nat Prod Res. 2021;35(24):6216-6222. DOI: 10.1080/14786419.2020.1837815.
Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X, et al. An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of Moringa oleifera. Front Pharmacol. 2023;13:1035220,1-18. DOI: 10.3389/fphar.2022.1035220.
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020;15(1):40,1-37. DOI: 10.1186/s13024-020-00391-7.
Cheignon Cm, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450-464. DOI: 10.1016/j.redox.2017.10.014.
Hettiarachchi N, Dallas M, Al-Owais M, Griffiths H, Hooper N, Scragg J, et al. Heme oxygenase-1 protects against Alzheimer’s amyloid-β1-42-induced toxicity via carbon monoxide production. Cell Death Dis. 2014;5(12):e1569-e,1-11. DOI: 10.1038/cddis.2014.529.
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between mitochondrial protein import and respiratory complexes assembly in neuronal health and degeneration. Life (Basel). 2021;11(5):432,1-44. DOI: 10.3390/life11050432.
Zhang Q, Xiao X, Li M, Li W, Yu M, Zhang H, et al. Gene expression profiling in glomeruli of diabetic nephropathy rat. Exp Biol Med (Maywood). 2012;237(8):903-911. DOI: 10.1258/ebm.2012.012032.
Vogel RO, Dieteren CE, van den Heuvel LP, Willems PH, Smeitink JA, Koopman WJ, et al. Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J Biol Chem. 2007;282(10):7582-7590. DOI: 10.1074/jbc.M609410200.
Suhane S, Kanzaki H, Arumugaswami V, Murali R, Ramanujan VK. Mitochondrial NDUFS3 regulates the ROS-mediated onset of metabolic switch in transformed cells. Biol Open. 2013;2(3):295-305. DOI: 10.1242/bio.20133244.
Arbo BD, Marques CV, Ruiz-Palmero I, Ortiz-Rodriguez A, Ghorbanpoor S, Arevalo M, et al. 4′-Chlorodiazepam is neuroprotective against amyloid-beta through the modulation of survivin and bax protein expression in vitro. Brain Res. 2016;1632:91-97. DOI: 10.1016/j.brainres.2015.12.018.
Feng MG, Liu CF, Chen L, Feng WB, Liu M, Hai H, et al. MiR-21 attenuates apoptosis-triggered by amyloid-β via modulating PDCD4/PI3K/AKT/GSK-3β pathway in SH-SY5Y cells. Biomed Pharmacother. 2018;101:1003-1007. DOI: 10.1016/j.biopha.2018.02.043.
Han XJ, Hu YY, Yang ZJ, Jiang LP, Shi SL, Li YR, et al. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria. Mol Med Rep. 2017;16(4):4521-4528. DOI: 10.3892/mmr.2017.7203.
Hwang S, Lim JW, Kim H. Inhibitory effect of lycopene on amyloid-β-induced apoptosis in neuronal cells. Nutrients. 2017;9(8):883,1-15. DOI: 10.3390/nu9080883.
Saeed K, Shah SA, Ullah R, Alam SI, Park JS, Saleem S, et al. Quinovic acid impedes cholesterol dyshomeostasis, oxidative stress, and neurodegeneration in an amyloid-β-induced mouse model. Oxid Med Cell Longev. 2020;2020:9523758,1-20. DOI: 10.1155/2020/9523758.
Hashim FJ, Vichitphan S, Boonsiri P, Vichitphan K. Neuroprotective assessment of Moringa oleifera leaves extract against oxidative-stress-induced cytotoxicity in SHSY5Y neuroblastoma cells. Plants (Basel). 2021;10(5):889,1-14. DOI: 10.3390/plants10050889.
Hannan MA, Kang JY, Mohibbullah M, Hong YK, Lee H, Choi JS, et al. Moringa oleifera with promising neuronal survival and neurite outgrowth promoting potentials. J Ethnopharmacol. 2014;152(1):142-150. DOI: 10.1016/j.jep.2013.12.036.
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer's disease: an update. Ann Neurosci. 2017;24(1):46-54. DOI: 10.1159/000464422.
Eckert GP, Renner K, Eckert SH, Eckmann J, Hagl S, Abdel-Kader RM, et al. Mitochondrial dysfunction-a pharmacological target in Alzheimer's disease. Mol Neurobiol. 2012;46(1):136-150. DOI: 10.1007/s12035-012-8271-z.
Matsuda S, Nakagawa Y, Tsuji A, Kitagishi Y, Nakanishi A, Murai T. Implications of PI3K/AKT/PTEN signaling on superoxide dismutases expression and in the pathogenesis of Alzheimer’s disease. Diseases. 2018;6(2):28,1-13. DOI: 10.3390/diseases6020028.
Martín D, Salinas M, López‐Valdaliso R, Serrano E, Recuero M, Cuadrado A. Effect of the Alzheimer amyloid fragment Aβ (25-35) on Akt/PKB kinase and survival of PC12 cells. J Neurochem. 2001;78(5):1000-1008. DOI: 10.1046/j.1471-4159.2001.00472.x.
Zeng KW, Wang XM, Ko H, Kwon HC, Cha JW, Yang HO. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/BclXL-regulated mitochondrial apoptotic pathway. Eur J Pharmacol. 2011;672(1-3):45-55. DOI: 10.1016/j.ejphar.2011.09.177.
Shi ZM, Han YW, Han XH, Zhang K, Chang YN, Hu ZM, et al. Upstream regulators and downstream effectors of NF-κB in Alzheimer's disease. J Neurol Sci. 2016;366:127-134. DOI: 10.1016/j.jns.2016.05.022.
Yoo JM, Lee BD, Sok DE, Ma JY, Kim MR. Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/antioxidant enzyme in neuronal cells. Redox Biol. 2017;11:592-599. DOI: 10.1016/j.redox.2016.12.034.
Qiu C, Wang YP, Pan XD, Liu XY, Chen Z, Liu LB. Exendin-4 protects Aβ (1-42) oligomer-induced PC12 cell apoptosis. Am J Transl Res. 2016;8(8):3540-3548. PMID: 27648144.
Zhou H, Li XM, Meinkoth J, Pittman RN. Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol. 2000;151(3):483-494. DOI: 10.1083/jcb.151.3.483.
Luetragoon T, Sranujit RP, Noysang C, Thongsri Y, Potup P, Suphrom N, et al. Bioactive Compounds in Moringa oleifera Lam. leaves inhibit the pro-inflammatory mediators in lipopolysaccharide-induced human monocyte-derived macrophages. Molecules. 2020;25(1):191,1-16. DOI: 10.3390/molecules25010191.
Lopez-Rodriguez NA, Gaytán-Martínez M, de la Luz Reyes-Vega M, Loarca-Piña G. Glucosinolates and isothiocyanates from Moringa oleifera: chemical and biological approaches. Plant Foods Hum Nutr. 2020;75(4):447-457. DOI: 10.1007/s11130-020-00851-x.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.