Moderate exercise mitigates cardiac dysfunction and injury induced by cyclosporine A through activation of the PGI2 / PPAR-γ signaling pathway

Khatereh Nourmohammadi , Abolfazl Bayrami, Roya Naderi, Alireza Shirpoor , Hamid Soraya

Abstract


Background and purpose: The present study investigated the role of the prostaglandin I2/peroxisome proliferator activator receptor (PGI2/PPAR) signaling pathway in cardiac cell proliferation, apoptosis, and systemic hemodynamic variables under cyclosporine A (CsA) exposure alone or combined with moderate exercises.

Experimental approach: Twenty-four male Wistar rats were classified into three groups, namely, control, CsA, and CsA + exercise.

Findings/Results: After 42 days of treatment, the findings showed a significant enhancement in the expression of the β-MHC gene, enhancement in protein expression of Bax and caspase-3, and a significant decline in the protein expression of Bcl-2 expression, as well as increased proliferation intensity in the heart tissue of the CsA group compared to the control group. Systolic pressure, pulse pressure, mean arterial pressure (MAP), QT and QRS duration, and T wave amplitude, as well as QTc amount in the CsA group, showed a significant increase compared to the control group. PPAR-γ and PGI2 showed no significant changes compared to the control group. Moderate exercise along with CsA significantly enhanced the protein expression of PPAR-γ and PGI2 and declined protein expression of Bax, and caspase-3 compared to those in the CsA group. In the CsA + exercise group, systolic pressure, MAP, and Twave showed a significant decrease compared to the CsA group. Moderate exercises along CsA improved heart cell proliferation intensity and significantly reduced        β-MHC gene expression compared to the CsA group.

Conclusions and implications: The results showed moderate exercise alleviated CsA-induced heart tissue apoptosis and proliferation with the corresponding activation of the PGI2/PPAR-γ pathway.


Keywords


Cyclosporine; Exercise; Heart; PGI2/PPAR signaling pathway; Proliferation.

Full Text:

PDF

References


Rezzani R, Rodella LF, Bonomini F, Tengattini S, Bianchi R, Reiter RJ. Beneficial effects of melatonin in protecting against cyclosporine A‐induced cardiotoxicity are receptor mediated. J Pineal Res. 2006;41(3):288-295. DOI: 10.1111/j.1600-079X.2006.00368.x.

Selcoki Y, Uz E, Bayrak R, Sahin S, Kaya A, Uz B, et al. The protective effect of erdosteine against cyclosporine A-induced cardiotoxicity in rats. Toxicology. 2007;239(1-2):53-59. DOI: 10.1016/j.tox.2007.06.096.

Patocka J, Nepovimova E, Kuca K, Wu W. Cyclosporine A: Chemistry and toxicity-a review. Curr Med Chem. 2021;28(20):3925-3934. DOI: 10.2174/0929867327666201006153202.

Chi J, Zhu Y, Fu Y, Liu Y, Zhang X, Han L, et al. Cyclosporin A induces apoptosis in H9c2 cardiomyoblast cells through calcium-sensing receptor-mediated activation of the ERK MAPK and p38 MAPK pathways. Mol Cell Biochem. 2012;367(1-2):227-236. DOI: 10.1007/s11010-012-1336-5.

Zhu XD, Chi JY, Liang HH, Huangfu LT, Guo ZD, Zou H, et al. MicroRNA-377 mediates cardiomyocyte apoptosis induced by cyclosporin A. Can J Cardiol. 2016;32(10):1249-1259. DOI: 10.1016/j.cjca.2015.11.012.

Geng L, Wang XT, Yu J, Yang YL. Antagonism of cortistatin against cyclosporine-induced apoptosis in rat myocardial cells and its effect on myocardial apoptosis gene expression. Eur Rev Med Pharmacol Sci. 2018;22(10):3207-3213. DOI: 10.26355/eurrev_201805_15082.

Nejad SS, Khori V, Nejad SS, Alizadeh A, Shahini N. Direct acute effects of cyclosporine on recording of extracellular field potentials of atrioventricular node, isolated from rabbit, during experimental atrial fibrillation. Res Pharm Sci. 2012;7(5):2.

Hashemi SR, Arab HA, Seifi B, Muhammadnejad S. A comparison effects of l-citrulline and l-arginine against cyclosporine-induced blood pressure and biochemical changes in the rats. Hipertens Riesgo Vasc. 2021;38(4):170-177. DOI: 10.1016/j.hipert.2021.08.002.

Marienhagen K, Lehner F, Klempnauer J, Hecker H, Borlak J. Treatment of cyclosporine induced hypertension: results from a long-term observational study using different antihypertensive medications. Vascul Pharmacol. 2019;115:69-83. DOI: 10.1016/j.vph.2018.06.012.

Helmy MM, Helmy MW, El‐Mas MM. Upregulation of cystathionine‐γ‐lyase/hydrogen sulfide pathway underlies the celecoxib counteraction of the cyclosporine‐induced hypertension and renal insult in rats. FASEB J. 2018;32:562-569. DOI: 10.1096/fasebj.2018.32.1_supplement.562.9.

Özkan G, Ulusoy S, Alkanat M, Orem A, Akcan B, Ersöz Ş, et al. Antiapoptotic and antioxidant effects of GSPE in preventing cyclosporine A-induced cardiotoxicity. Ren Fail. 2012;34(4):460-466. DOI: 10.3109/0886022X.2012.656563.

Rezzani R, Rodella LF, Fraschini F, Gasco MR, Demartini G, Musicanti C, et al. Melatonin delivery in solid lipid nanoparticles: prevention of cyclosporine A induced cardiac damage. J Pineal Res. 2009;46(3):255-261. DOI: 10.1111/j.1600-079X.2008.00651.x.

Muzio G, Barrera G, Pizzimenti S. Peroxisome proliferator-activated receptors (PPARs) and oxidative stress in physiological conditions and in cancer. Antioxidants. 2021;10(11):1734,1-19. DOI: 10.3390/antiox10111734.

Theocharis S, Margeli A, Vielh P, Kouraklis G. Peroxisome proliferator-activated receptor-γ ligands as cell-cycle modulators. Cancer Treat Rev. 2004;30(6):545-554. DOI: 10.1016/j.ctrv.2004.04.004.

Zoladz JA, Majerczak J, Duda K, Chłopicki S. Endurance training increases exercise-induced prostacyclin release in young, healthy men–relationship with VO2max. Pharmacol Rep. 2010; 62(3):494-502. DOI: 10.1016/S1734-1140(10)70305-4.

Shirpoor A, Zerehpoosh M, Khadem Ansari MH, Kheradmand F, Rasmi Y. Ginger extract mitigates ethanol-induced changes of alpha and beta-myosin heavy chain isoforms gene expression and oxidative stress in the heart of male Wistar rats. DNA Repair. 2017;57:45-49. DOI: 10.1016/j.dnarep.2017.06.023.

Koh ES, Kim S, Kim M, Hong YA, Shin SJ, Park CW, et al. D‑Pinitol alleviates cyclosporine A‑induced renal tubulointerstitial fibrosis via activating Sirt1 and Nrf2 antioxidant pathways. Int J Mol Med. 2018;41(4):1826-1834. DOI: 10.3892/ijmm.2018.3408.

Høydal MA, Wisløff U, Kemi OJ, Ellingsen O. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Prev Cardiol. 2007;14(6):753-760. DOI: 10.1097/HJR.0b013e3281eacef1.

Shirpoor A, Heshmatian B, Tofighi A, Eliasabad SN, Kheradmand F, Zerehpoosh M. Nandrolone administration with or without strenuous exercise increases cardiac fatal genes overexpression, calcium/calmodulin-dependent protein kinaseiidelta, and monoamine oxidase activities and enhances blood pressure in adult Wistar rats. Gene. 2019;697:131-137. DOI: 10.1016/j.gene.2019.02.053.

Kawasaki H, Mocarski ES, Kosugi I, Tsutsui Y. Cyclosporine inhibits mouse cytomegalovirus infection via a cyclophilin-dependent pathway specifically in neural stem/progenitor cells. J Virol. 2007;81(17):9013-9023. DOI: 10.1128/jvi.00261-07.

Zhou YC, Liu JY, Li J, Zhang J, Xu YQ, Zhang HW, et al. Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial-mesenchymal transition. Int J Radiat Oncol Biol Phys. 2011;81(5):1530-1537. DOI: 10.1016/j.ijrobp.2011.06.1956.

Rezzani R, Giugno L, Buffoli B, Bonomini F, Bianchi R. The protective effect of caffeic acid phenethyl ester against cyclosporine A-induced cardiotoxicity in rats. Toxicology. 2005;212(2-3):155-164. DOI: 10.1016/j.tox.2005.04.020.

Mahmoud NM, Elshazly SM, Rezq S. Geraniol protects against cyclosporine A-induced renal injury in rats: role of Wnt/β-catenin and PPARγ signaling pathways. Life Sci. 2022;291:120259. DOI: 10.1016/j.lfs.2021.120259.

Mesripour A, Golbidi M, Hajhashemi V. Dextromethorphan improved cyclosporine-induced depression in mice model of despair. Res Pharm Sci. 2020;15(5):447-453. DOI: 10.4103/1735-5362.297847.

Hung W, Fang SH, Wu CL, Ko MH, Liu TH, Chang CK. Regular endurance exercise prevents cyclosporine A-induced oxidative stress in mouse skeletal muscles. Sci Spo. 2013;28(5):295-299. DOI: 10.1016/j.scispo.2013.02.008.

Ko MH, Chang CK, Wu CL, Hou YC, Hong W, Fang SH. The interactive effect of exercise and immunosuppressant cyclosporin A on immune function in mice. J Sports Sci. 2010;28(9):967-973. DOI: 10.1080/02640414.2010.481306.

El-Bassossy HM, Banjar ZM, El-Mas MM. The inflammatory state provokes sexual dimorphism in left ventricular and electrocardiographic effects of chronic cyclosporine in rats. Sci Rep. 2017;7(1):42457,1-9. DOI: 10.1038/srep42457.

Kutkuhn B, Hollenbeck M, Heering P, Koch M, Voiculescu A, Reinhard T, et al. Development of insulin resistance and elevated blood pressure during therapy with cyclosporine A. Blood Press. 1997;6(1):13-17. DOI: 10.3109/08037059709086440.

Kingma I, Harmsen E, ter Keurs HE, Benediktsson H, Paul LC. Cyclosporine-associated reduction in systolic myocardial function in the rat. Int J Cardiol. 1991;31(1):15-22. DOI: 10.1016/0167-5273(91)90262-N

Galvão De Lima JJ, Colombo FMC, Lopes HF, Riccio GMG, Krieger EM. Lack of effect of a single oral dose of cyclosporine on systemic blood pressure and on forearm blood flow and vascular resistance in humans. Am J Hypertens. 1998;11(11):1371-1375. DOI: 10.1016/S0895-7061(98)00156-3.

Takeda Y, Miyamori I, Wu P, Yoneda T, Furukawa K, Takeda R. Effects of an endothelin receptor antagonist in rats with cyclosporine-induced hypertension. Hypertension. 1995;26(6):932-936. DOI: 10.1161/01.HYP.26.6.932.

Hammoud SH, Omar AG, Eid AA, El-Mas MM. CYP4A/CYP2C modulation of the interaction of calcium channel blockers with cyclosporine on EDHF-mediated renal vasodilations in rats. Toxicol Appl Pharmacol. 2017;334:110-119. DOI: 10.1016/j.taap.2017.09.007.

Aminzadeh A. Protective effect of tropisetron on high glucose induced apoptosis and oxidative stress in PC12 cells: roles of JNK, P38 MAPKs, and mitochondria pathway. Metab Brain Dis. 2017;32(3):819-826. DOI: 10.1007/s11011-017-9976-5.

Ronni-Sivula H, Malm H, Ylikorkala O, Viinikka L. Marathon run stimulates more prostacyclin than thromboxane synthesis and differently in men and women. Prostaglandins. 1993;46(1):75-79. DOI: 10.1016/0090-6980(93)90064-E.

Ghazipour AM, Shirpoor A, Ghiasi R, Pourheydar B, Khalaji N, Naderi R. Cyclosporine A induces testicular injury via mitochondrial apoptotic pathway by regulation of mir-34a and sirt-1 in male rats: the rescue effect of curcumin. Chem Biol Interact. 2020;327:109180,1-42. DOI: 10.1016/j.cbi.2020.109180.

Jalilian F, Moieni-Arya M, Hosseinzadeh L, Shokoohinia Y. Oxypeucedanin and isoimperatorin extracted from Prangos ferulacea (L.) Lindl protect PC12 pheochromocytoma cells from oxidative stress and apoptosis induced by doxorubicin. Res Pharm Sci. 2022;17(1):12-21. DOI: 10.4103/1735-5362.329922.

Hsu YH, Chen CH, Hou CC, Sue YM, Cheng CY, Cheng TH, et al. Prostacyclin protects renal tubular cells from gentamicin-induced apoptosis via a PPARα-dependent pathway. Kidney Int. 2008;73(5):578-587. DOI: 10.1038/sj.ki.5002704.

Inoue I, Goto SI, Matsunaga T, Nakajima T, Awata T, Hokari S, et al. The ligands/activators for peroxisome proliferator-activated receptor α (PPARα) and PPARγ increase Cu2+, Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism. 2001;50(1):3-11. DOI: 10.1053/meta.2001.19415.

Stølen T, Shi M, Wohlwend M, Høydal MA, Bathen TF, Ellingsen Ø, et al. Effect of exercise training on cardiac metabolism in rats with heart failure. Scand Cardiovasc J. 2020;54(2):84-91. DOI: 10.1080/14017431.2019.1658893.

Zhu C, Huang S, Yuan Y, Ding G, Chen R, Liu B, et al. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARγ. Am J Pathol. 2011;178(5):2020-2031. DOI: 10.1016/j.ajpath.2011.01.029.

Shu J, Huang R, Tian Y, Liu Y, Zhu R, Shi G. Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways. Ann Palliat Med. 2020;9(4):1965-1975. DOI: 10.21037/apm-20-960.

Hao GH, Niu XL, Gao DF, Wei J, Wang NP. Agonists at PPAR-gamma suppress angiotensin II‐induced production of plasminogen activator inhibitor‐1 and extracellular matrix in rat cardiac fibroblasts. Br J Pharmacol. 2008;153(7):1409-1419. DOI: 10.1038/bjp.2008.21.

Hou X, Zhang Y, Shen YH, Liu T, Song S, Cui L, et al. PPAR-γ activation by rosiglitazone suppresses angiotensin II-mediated proliferation and phenotypictransition in cardiac fibroblasts via inhibition of activation of activator protein 1. Eur J Pharmacol. 2013;715(1-3):196-203. DOI: 10.1016/j.ejphar.2013.05.021.

Gong K, Chen YF, Li P, Lucas JA, Hage FG, Yang Q, et al. Transforming growth factor-β inhibits myocardial PPARγ expression in pressure overload-induced cardiac fibrosis and remodeling in mice. J hypertens. 2011;29(9):1810-1819. DOI: 10.1097/HJH.0b013e32834a4d03.

Palomer X, Álvarez-Guardia D, Rodríguez-Calvo R, Coll T, Laguna JC, Davidson MM, et al. TNF-alpha reduces PGC-1 alpha expression through NF-kappaB and p38 MAPK leading to increased glucose oxidation in a human cardiac cell model. Cardiovasc Res. 2009;81(4):703-712. DOI: 10.1093/cvr/cvn327.

Planavila A, Iglesias R, Giralt M, Villarroya F. Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovas Res. 2011;90(2):276-284. DOI: 10.1093/cvr/cvq376.

van Bilsen M, van Nieuwenhoven FA. PPARs as therapeutic targets in cardiovascular disease. Expert Opin Ther Targets. 2010;14(10):1029-1045. DOI: 10.1517/14728222.2010.512917.

Irukayama-Tomobe Y, Miyauchi T, Sakai S, Kasuya Y, Ogata T, Takanashi M, et al. Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-α partly via blockade of c-Jun NH2-terminal kinase pathway. Circulation. 2004;109(7):904-910. DOI: 10.1161/01.CIR.0000112596.06954.00.

el Azzouzi H, Leptidis S, Bourajjaj M, Armand AS, van der Nagel R, van Bilsen M, et al. Peroxisome proliferator-activated receptor (PPAR) gene profiling uncovers insulin-like growth factor-1 as a PPARα target gene in cardioprotection. J Biol Chem. 2011; 286(16):14598-14607. DOI: 10.1074/jbc.M111.220525.

Kim YJ, Park KJ, Song JK, Shim TJ, Islam KN, Bae JW, et al. The PPARγ agonist protects cardiomyocytes from oxidative stress and apoptosis via thioredoxin overexpression. Biosci Biotech Bioch. 2012;76(12):2181-2187. DOI: 10.1271/bbb.120423.

Reiser PJ, Portman MA, Ning XH, Moravec CS. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol. 2001;280(4):H1814-H1820. DOI: 10.1152/ajpheart.2001.280.4.H1814.

Shahrivar FF, Badavi M, Dianat M, Mard A, Ahangarpour A, Samarbaf-Zadeh A. Exogenous apelin changes alpha and beta myosin heavy chain mRNA expression and improves cardiac function in PTU-induced hypothyroid rats. Gene. 2016;595(1):25-30. DOI: 10.1016/j.gene.2016.09.025.

Korashy HM, Al-Suwayeh HA, Maayah ZH, Ansari MA, Ahmad SF, Bakheet SA. Mitogen-activated protein kinases pathways mediate the sunitinib-induced hypertrophy in rat cardiomyocyte H9c2 cells. Cardiovasc Toxicol. 2015;15(1):41-51. DOI: 10.1007/s12012-014-9266-y.

Sack MN. Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol. 2009;46(6): 842-849. DOI: 10.1016/j.yjmcc.2009.02.001.

Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skelet Muscle. 2015;5:1-14. DOI: 10.1186/s13395-015-0046-6.

Naderi R, Shirpoor A, Samadi M, Nezamimajd F, Rasmi Y, Bagheri M. Protective effects of tropisetron on diabetes-induced expression of genes involved in regulation of contractility, cardiomyopathy and apoptosis in the left ventricle of rats. J Exp Clin Med. 2022;39(2):376-382. DOI: 10.52142/omujecm.39.2.13.

Beer ELd, Bottone AE, Rijk MCv, Velden Jvd, Voest EE. Dexrazoxane pre‐treatment protects skinned rat cardiac trabeculae against delayed doxorubicin‐induced impairment of crossbridge kinetics. Br J Pharmacol. 2002;135(7):1707-1714. DOI: 10.1038/sj.bjp.0704621.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.