Integrative bioinformatics analysis of ACS enzymes as candidate prognostic and diagnostic biomarkers in colon adenocarcinoma

Ehsan Parsazad , Farina Esrafili, Behnaz Yazdani, Saghi Ghafarzadeh, Namdar Razmavar, Hajar Sirous

Abstract


Background and purpose: Acyl-CoA synthetase (ACS) enzymes play an important role in the activation of fatty acids. While many studies have found correlations between the expression levels of ACS enzymes with the progression, growth, and survival of cancer cells, their role and expression patterns in colon adenocarcinoma are still greatly unknown and demand further investigation.

Experimental approach: The expression data of colon adenocarcinoma samples were downloaded from the Cancer Genome Atlas (TCGA) database. Normalization and differential expression analysis were performed to identify differentially expressed genes (DEGs). Gene set enrichment analysis was applied to identify top enriched genes from ACS enzymes in cancer samples. Gene ontology and protein-protein interaction analyses were performed for the prediction of molecular functions and interactions. Survival analysis and receiver operating characteristic test (ROC) were performed to find potential prognostic and diagnostic biomarkers.

Findings/Results: ACSL6 and ACSM5 genes demonstrated more significant differential expression and LogFC value compared to other ACS enzymes and also achieved the highest enrichment scores. Gene ontology analysis predicted the involvement of top DEGs in fatty acids metabolism, while protein-protein interaction network analysis presented strong interactions between ACSLs, ACSSs, ACSMs, and ACSBG enzymes with each other. Survival analysis suggested ACSM3 and ACSM5 as potential prognostic biomarkers, while the ROC test predicted stronger diagnostic potential for ACSM5, ACSS2, and ACSF2 genes.

Conclusion and implications: Our findings revealed the expression patterns, prognostic, and diagnostic biomarker potential of ACS enzymes in colon adenocarcinoma. ACSM3, ACSM5, ACSS2, and ACSF2 genes are suggested as possible prognostic and diagnostic biomarkers.


Keywords


Acyl-CoA synthase; Cancer; Colon adenocarcinoma; Colon cancer; Fatty acid activation.

Full Text:

PDF

References


Ranasinghe R, Mathai M, Zulli A. A synopsis of modern-day colorectal cancer: where we stand. Biochim Biophys Acta Rev Cancer. 2022;1877(2):188699. DOI: 10.1016/j.bbcan.2022.188699.

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33. DOI: 10.3322/caac.21708.

Weiser MR. AJCC 8th edition: colorectal cancer. Ann Surg Oncol. 2018;25(6):1454-1455.

DOI: 10.1245/s10434-018-6462-1.

Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19(3): 329-359. DOI: 10.6004/jnccn.2021.0012.

Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191-197. DOI: 10.1055/s-0029-1242458.

Brown RE, Short SP, Williams CS. Colorectal cancer and metabolism. Curr Colorectal Cancer Rep. 2018;14(6):226-241. DOI: 10.1007/s11888-018-0420-y

Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6(6):1353-1363. DOI: 10.1242/dmm.011338.

Chen Y, Li P. Fatty acid metabolism and cancer development. Sci Bull. 2016;61(19):1473-1479. DOI: 10.1007/s11434-016-1129-4.

Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4-22. DOI: 10.1038/s41416-019-0650-z.

Currie E, Schulze A, Zechner R, Walther TC, Farese Jr RV. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153-161. DOI: 10.1016/j.cmet.2013.05.017.

Chen M, Huang J. The expanded role of fatty acid metabolism in cancer: new aspects and targets. Precis Clin Med. 2019;2(3):183-191. DOI: 10.1093/pcmedi/pbz017.

Notarnicola M, Tutino V, Calvani M, Lorusso D, Guerra V, Caruso MG. Serum levels of fatty acid synthase in colorectal cancer patients are associated with tumor stage. J Gastrointest Cancer. 2012;43(3):508-511. DOI: 10.1007/s12029-011-9300-2.

da Costa AC, Júnior SA, de Oliveira Ferreira F, Begnami MD, de Lima VCC, de Santa Cruz Oliveira F, et al. Prognostic value of factors associated with hypoxia and lipid metabolism in patients with colorectal cancer. Appl Cancer Res. 2017;37(1):1-6. DOI: 10.1186/s41241-017-0050-8.

Fernández LP, Ramos-Ruiz R, Herranz J, Martín-Hernández R, Vargas T, Mendiola M, et al. The transcriptional and mutational landscapes of lipid metabolism-related genes in colon cancer. Oncotarget. 2018;9(5):5919-5930. DOI: 10.18632/oncotarget.23592.

Yeh CS, Wang JY, Cheng TL, Juan CH, Wu CH, Lin SR. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis. Cancer Lett. 2006;233(2):297-308. DOI: 10.1016/j.canlet.2005.03.050.

Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732-749. DOI: 10.1038/nrc.2016.89.

Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13(4):227-232. DOI: 10.1038/nrc3483.

Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long‑chain acyl‑CoA synthetases. Oncol Lett. 2018;16(2):1390-1396. DOI: 10.3892/ol.2018.8843.

Groot PH, Scholte HR, Hülsmann WC. Fatty acid activation: specificity, localization, and function. Adv Lipid Res. 1976;14:75-126. DOI: 10.1016/b978-0-12-024914-5.50009-7.

Watkins PA. Fatty acid activation. Prog Lipid Res. 1997;36(1):55-83. DOI: 10.1016/s0163-7827(97)00004-0.

Ingram-Smith C, Woods BI, Smith KS. Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase. Biochemistry. 2006;45(38):11482-11490. DOI: 10.1021/bi061023e.

Lindahl PA, Chang B. The evolution of acetyl-CoA synthase. Orig Life Evol Biosph. 2001;31(4):403-434. DOI: 10.1023/a:1011809430237

Yoshii Y, Furukawa T, Yoshii H, Mori T, Kiyono Y, Waki A, et al. Cytosolic acetyl‐CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl‐CoA/acetate metabolism. Cancer Sci. 2009;100(5):821-827. DOI: 10.1111/j.1349-7006.2009.01099.x.

Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27(1): 57-71. DOI: 10.1016/j.ccell.2014.12.002.

Chang WC, Cheng WC, Cheng BH, Chen L, Ju LJ, Ou YJ, et al. Mitochondrial acetyl‐CoA synthetase 3 is biosignature of gastric cancer progression. Cancer Med. 2018;7(4):1240-1252. DOI: 10.1002/cam4.1295.

Zhang J, Duan H, Feng Z, Han X, Gu C. Acetyl-CoA synthetase 3 promotes bladder cancer cell growth under metabolic stress. Oncogenesis. 2020;9(5): 46,1-10.

DOI: 10.1038/s41389-020-0230-3.

Liu M, Liu N, Wang J, Fu S, Wang X, Chen D. Acetyl-CoA synthetase 2 as a therapeutic target in tumor metabolism. Cancers (Basel). 2022;14(12):2896,1-16. DOI: 10.3390/cancers14122896.

Yazdani B, Sirous H. Expression analysis of HIF-3α as a potent prognostic biomarker in various types of human cancers: a case of meta-analysis. Res Pharm Sci. 2022;17(5):508-526. DOI: 10.4103/1735-5362.355210.

Mozolewska P, Duzowska K, Pakiet A, Mika A, Śledziński T. Inhibitors of fatty acid synthesis and oxidation as potential anticancer agents in colorectal cancer treatment. Anticancer Res. 2020;40(9):4843-4856. DOI: 10.21873/anticanres.14487.

Wang H, Xi Q, Wu G. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 2016;5(7):1599-1606. DOI: 10.1002/cam4.711.

Mokhtari K, Mahdevar M, Hajipour M, Esmaeili M, Peymani M, Mirzaei S, et al. Involvement of unsaturated fatty acid biosynthesis in CRC progression based on in vitro and in silico studies. Biomed Pharmacother. 2022;153:113338. DOI: 10.1016/j.biopha.2022.113338

Chen L, Yang C, Chen S, Zhou Q, Wang G, Cai S, et al. Multi-omics characterization of the unsaturated fatty acid biosynthesis pathway in colon cancer. Am J Cancer Res. 2022;12(8):3985-4000. PMID: 36119831.

Radif Y, Ndiaye H, Kalantzi V, Jacobs R, Hall A, Minogue S, et al. The endogenous subcellular localisations of the long chain fatty acid-activating enzymes ACSL3 and ACSL4 in sarcoma and breast cancer cells. Mol Cell Biochem. 2018;448(1):275-286. DOI: 10.1007/s11010-018-3332-x.

Ruan H-Y, Yang C, Tao X-M, He J, Wang T, Wang H, et al. Downregulation of ACSM3 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Am J Cancer Res. 2017;7(3):543-553. DOI: 2156-6976/ajcr0039003

Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge, Contemp Oncol (Pozn). 2015;19(1A):A68-A77 DOI: 10.5114/wo.2014.47136.

Quan J, Bode AM, Luo X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol. 2021;909:174397,1-8. DOI: 10.1016/j.ejphar.2021.174397.

Chen WC, Wang CY, Hung YH, Weng TY, Yen MC, Lai MD. Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme A synthetase family in cancer. PloS One. 2016;11(5):e0155660,1-23. DOI: 10.1371/journal.pone.0155660.

Angius A, Uva P, Pira G, Muroni MR, Sotgiu G, Saderi L, et al. Integrated analysis of miRNA and mRNA endorses a twenty miRNAs signature for colorectal carcinoma. Int J Mol Sci. 2019;20(16):4067,1-16. DOI: 10.3390/ijms20164067.

Ma W, Li T, Wu S, Li J, Wang X, Li H. LOX and ACSL5 as potential relapse markers for pancreatic cancer patients. Cancer Biol Ther. 2019;20(6): 787-798. DOI: 10.1080/15384047.2018.1564565.

Hartmann F, Sparla D, Tute E, Tamm M, Schneider U, Jeon MK, et al. Low acyl-CoA synthetase 5 expression in colorectal carcinomas is prognostic for early tumour recurrence. Pathol Res Pract. 2017;213(3):261-266. DOI: 10.1016/j.prp.2016.09.002.

Wang Y, Cai X, Zhang S, Cui M, Liu F, Sun B, et al. HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer. Biochem Biophys Res Commun. 2017;484(3):565-571. DOI: 10.1016/j.bbrc.2017.01.126.

Zhang Q, Zhou W, Yu S, Ju Y, To SKY, Wong AST, et al. Metabolic reprogramming of ovarian cancer involves ACSL1-mediated metastasis stimulation through upregulated protein myristoylation. Oncogene. 2021;40(1):97-111. DOI: 10.1038/s41388-020-01516-4.

Guo L, Lu J, Gao J, Li M, Wang H, Zhan X. The function of SNHG7/miR‐449a/ACSL1 axis in thyroid cancer. J Cell Biochem. 2020;121(10):4034-4042. DOI: 10.1002/jcb.29569.

Rossi Sebastiano M, Pozzato C, Saliakoura M, Yang Z, Peng RW, Galiè M, et al. ACSL3-PAI-1 signaling axis mediates tumor-stroma cross-talk promoting pancreatic cancer progression. Sci Adv. 2020;6(44):eabb9200,1-16. DOI: 10.1126/sciadv.abb9200.

Fernández LP, Merino M, Colmenarejo G, Moreno-Rubio J, Sánchez-Martínez R, Quijada-Freire A, et al. Metabolic enzyme ACSL3 is a prognostic biomarker and correlates with anticancer effectiveness of statins in non-small cell lung cancer. Mol Oncol. 2020;14(12):3135-3152. DOI: 10.1002/1878-0261.1281646. Wu X, Deng F, Li Y, Daniels G, Du X, Ren Q, et al. ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget. 2015;6(42):44849-44863. DOI: 10.18632/oncotarget.6438.

Ma LL, Liang L, Zhou D, Wang SW. Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4. Neoplasma. 2021;68(1):165-173. DOI: 10.4149/neo_2020_200707N705.

Tian X, Li S, Ge G. Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 signaling. Cancer Manag Res. 2021;13:1333-1342.DOI: 10.2147/CMAR.S274631.

Boomgaarden I, Vock C, Klapper M, Döring F. Comparative analyses of disease risk genes belonging to the acyl-CoA synthetase medium-chain (ACSM) family in human liver and cell lines. Biochem Genet. 2009;47(9-10):739-748. DOI: 10.1007/s10528-009-9273-z.

Yazdani B, Jazini M, Jabbari N, Karami M, Rahimirad S, Azadeh M, et al. Altered expression level of ACSM5 in breast cancer: an integrative analysis of tissue biomarkers with diagnostic potential. Gen Rep. 2021;22:100992,1-7. DOI: 10.1016/j.genrep.2020.100992.

Guo Y, Ren C, Huang W, Yang W, Bao Y. Oncogenic ACSM1 in prostate cancer is through metabolic and extracellular matrix-receptor interaction signaling pathways. Am J Cancer Res. 2022;12(4):1824-1842.

Yan L, He Z, Li W, Liu N, Gao S. The overexpression of Acyl-CoA medium-chain synthetase-3 (ACSM3) suppresses the ovarian cancer progression via the inhibition of integrin β1/AKT signaling pathway. Front Oncol. 2021;11:644840. DOI: 10.3389/fonc.2021.644840.

Gopal R, Selvarasu K, Pandian PP, Ganesan K. Integrative transcriptome analysis of liver cancer profiles identifies upstream regulators and clinical significance of ACSM3 gene expression. Cell Oncol (Dordr). 2017;40(3):219-233. DOI: 10.1007/s13402-017-0321-0.

Van der Sluis R, Erasmus E. Xenobiotic/medium chain fatty acid: CoA ligase-a critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin. Expert Opin Drug Metab Toxicol. 2016;12(10):1169-1179. DOI: 10.1080/17425255.2016.1206888.

Alsaleem MA, Ball G, Toss MS, Raafat S, Aleskandarany M, Joseph C, et al. A novel prognostic two-gene signature for triple negative breast cancer. Mod Pathol. 2020;33(11):2208-2220. DOI: 10.1038/s41379-020-0563-7.

Lv S, Wang W, Wang H, Zhu Y, Lei C. PPARγ activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway. BMC Cancer. 2019;19(1):204,1-13. DOI: 10.1186/s12885-019-5426-6.

Zhang Z, Li Q, Li A, Wang F, Li Z, Meng Y, et al. Identifying a hypoxia related score to predict the prognosis of bladder cancer: a study with The Cancer Genome Atlas (TCGA) database. Transl Androl Urol. 2021;10(12):4353-4364. DOI: 10.21037/tau-21-569.

Björnson E, Mukhopadhyay B, Asplund A, Pristovsek N, Cinar R, Romeo S, et al. Stratification of hepatocellular carcinoma patients based on acetate utilization. Cell Rep. 2015;13(9):2014-2026. DOI: 10.1016/j.celrep.2015.10.045.

Sahuri-Arisoylu M, Mould RR, Shinjyo N, Bligh S, Nunn AV, Guy GW, et al. Acetate induces growth arrest in colon cancer cells through modulation of mitochondrial function. Front Nutr. 2021;8: 588466. DOI: 10.3389/fnut.2021.588466.

Sun X, Zhang J, Nie Q. Inferring latent temporal progression and regulatory networks from cross-sectional transcriptomic data of cancer samples. PLoS Comput Biol. 2021;17(3):e1008379. DOI: 10.1371/journal.pcbi.1008379.

Li CJ, Chiu YH, Chang C, Chang YCI, Sheu JJC, Chiang AJ. Acetyl coenzyme a synthase 2 acts as a prognostic biomarker associated with immune infiltration in cervical squamous cell carcinoma. Cancers (Basel). 2021;13(13):3125,1-17.DOI: 10.3390/cancers13133125.

Hur H, Kim YB, Ham IH, Lee D. Loss of ACSS2 expression predicts poor prognosis in patients with gastric cancer. J Surg Oncol. 2015;112(6):585-591. DOI: 10.1002/jso.24043.

Wen H, Lee S, Zhu WG, Lee OJ, Yun SJ, Kim J, et al. Glucose-derived acetate and ACSS2 as key players in cisplatin resistance in bladder cancer. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(3):413-421. DOI: 10.1016/j.bbalip.2018.06.005.

Zhou L, Song Z, Hu J, Liu L, Hou Y, Zhang X, et al. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3. Theranostics. 2021;11(2): 841-860. DOI: 10.7150/thno.49384.

Pei Z, Jia Z, Watkins PA. The second member of the human and murine bubblegum family is a testis-and brainstem-specific acyl-CoA synthetase. J Biol Chem. 2006;281(10):6632-6641. DOI: 10.1074/jbc.M511558200.

Kanno T, Nakajima T, Kawashima Y, Yokoyama S, Asou HK, Sasamoto S, et al. Acsbg1-dependent mitochondrial fitness is a metabolic checkpoint for tissue Treg cell homeostasis. Cell Rep. 2021;37(6):109921. DOI: 10.1016/j.celrep.2021.109921.

Maiguel D, Pei Z, Masashi M, Maguire M, Jia Z, Watkins P. Medium chain fatty acid acyl‐CoA synthetase ACSF2 may play a role in neuronal differentiation. FASEB J. 2006;20(5):A948-A948. DOI: 10.1096/fasebj.20.5.A948-Aa948

Zhao Z, Liu M, Xu Z, Cai Y, Peng B, Liang Q, et al. Identification of ACSF gene family as therapeutic targets and immune-associated biomarkers in hepatocellular carcinoma. Aging (Albany NY). 2022;14(19):7926-7940. DOI: 10.18632/aging.204323.

Hasegawa S, Noda K, Maeda A, Matsuoka M, Yamasaki M, Fukui T. Acetoacetyl-CoA synthetase, a ketone body-utilizing enzyme, is controlled by SREBP-2 and affects serum cholesterol levels. Mol Genet Metab. 2012;107(3):553-560. DOI: 10.1016/j.ymgme.2012.08.017.

Ohgami M, Takahashi N, Yamasaki M, Fukui T. Expression of acetoacetyl-CoA synthetase, a novel cytosolic ketone body-utilizing enzyme, in human brain. Biochem Pharmacol. 2003;65(6):989-994. DOI: 10.1016/s0006-2952(02)01656-8.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.