Bioassay-guided isolation in Salvia abrotanoides Karel. stem based on its anti-fungal and anti-trichomonas activity

Mustafa Ghanadian , Rasoul Jahanshahi Afshar, Hamed Fakhim, Hosseinail Yousefi, Adam Matkowski, Mohammad Khodadadi, Shima Gharibi

Abstract


Background and purpose Salvia abrotanoides is considered a medicinal plant and has a broad distribution in Iran. In Iran's traditional medicine, it is also used to treat leishmaniasis, malaria, atherosclerosis, cardiovascular disease, and as a disinfectant. This research aimed to determine the anti-Candida component from S. abratonoides and anti-Trichomonas natural compounds from the stems of this plant.

Experimental approach: The plant shoots were collected, dried, and after removing the leaves, grounded. Dried plant material was extracted in a maceration tank, concentrated by a Rotavap, degreased, and fractionated by normal column chromatography. Based on anti-fungal screening against Candida species, Fr. 4, with more anti-fungal activity, was selected for phytochemical analysis, by different chromatographic methods on the silica gel column and Sephadex LH-20. Isolated compounds were elucidated by NMR analysis, mass spectrum, and ultraviolet spectroscopy. Anti-fungal effects were investigated using the fungal suspension, incubation, and parasite-counting methods on purified compounds. Antibacterial effects were assessed using the Broth dilution test and reported according to the MIC parameter.

Findings/Results: Two diterpenoid compounds named carnosol (compound 1), 11-hydroxy-12-methoxy-20-norabiata-8, 11, 13-trien (compound 2), and a flavonoid: 6,7-dimethoxy-5, 4'-dihydroxyflavone (compound 3) were isolated and identified. Compound 1 had selective anti-fungal effects against C. albicans, C. glabrata, and C. parapsilosis, but weak toxicity against Trichomonas vaginalis with IC50 of 675.8 μg/mL, less than metronidazole with an IC50 of 13.2 μg/mL.

Conclusion and implications: Carnosol as the main component was assayed against Candida, Aspergillus, Rhizopus, and Trichomanas species. The results confirmed its effect on Candida compared to standard drugs.


Keywords


Candida; Carnosol; Salvia; Trichomonas.

Full Text:

PDF

References


Ghaffari Z, Rahimmalek M, Sabzalian MR. Variation in the primary and secondary metabolites derived from the isoprenoid pathway in the Perovskia species in response to different wavelengths generated by light emitting diodes (LEDs). Ind Crops Prod 2019;140:111592,1-8.DOI: 10.1016/j.indcrop.2019.111592.

Bielecka M, Pencakowski B, Stafiniak M, Jakubowski K, Rahimmalek M, Gharibi S, et al. Metabolomics and DNA-based authentication of two traditional Asian medicinal and aromatic species of Salvia subg. Perovskia. Cells. 2021;10(1):112-136.DOI: 10.3390/cells10010112.

Pourhosseini S, Mirjalili M, Nejad Ebrahimi S, Sonboli A. Essential oil quantity and quality of different plant organs from Perovskia abrotanoides Karel in natural habitat of North Khorasan province. J Plant Prod. 2018;40(4):53-62.DOI:10.22055/ppd.2018.13446.

Afshari M, Rahimmalek M, Sabzalian MR, Bielecka M, Matkowski A, Talebi M. Changes in physiological, phytochemical traits and gene expression of two Perovskia species in response to water deficit. Sci Hortic. 2022;293:110747.DOI: 10.1016/j.scienta.2021.110747.

Miroliaei M, Aminjafari A, Ślusarczyk S, Nawrot-Hadzik I, Rahimmalek M, Matkowski A. Inhibition of glycation-induced cytotoxicity, protein glycation, and activity of proteolytic enzymes by extract from Perovskia atriplicifolia roots. Pharmacogn Mag. 2017;13(Suppl 3):S676-S683.DOI: 10.4103/pm.pm_559_16.

Mohammadhosseini M, Venditti A, Akbarzadeh A. The genus perovskia kar.: ethnobotany, chemotaxonomy and phytochemistry: a review. Toxin Rev. 2021;40(4):484-505.DOI: 10.1080/15569543.2019.1691013.

Najafabadi HS, Bamoniri AE, Batooli H. Evaluation of the in vitro antioxidant activity of polar and non polar extracts from Perovskia atriplicifolia Benth. Res Pharm Sci. 2012;;7(5):S793. 8.Tabefam M, Farimani MM, Danton O, Ramseyer J, Kaiser M, Ebrahimi SN, et al. Antiprotozoal diterpenes from Perovskia abrotanoides. Planta Med. 2018; 84(12-13):913-919.DOI:10.1055/a-0608-4946.

Karimzadeh SM, Moridi Farimani M, Amiri MS, Tabefam M, Alilou M, Stuppner H. Perovskanol, a new sesquiterpenoid with an unprecedented skeleton from Perovskia abrotanoides. Nat Prod Res. 2021;35(15):2515-2519.DOI: 10.1080/14786419.2019.1684280.

Alizadeh Z, Farimani MM, Parisi V, Marzocco S, Ebrahimi SN, De Tommasi N. Nor-abietane diterpenoids from Perovskia abrotanoides roots with anti-inflammatory potential. J Nat Prod. 2021;84(4):1185-1197.DOI: 10.1021/acs.jnatprod.0c01256.

Sairafianpour M, Christensen J, Staerk D, Budnik BA, Kharazmi A, Bagherzadeh K, et al. Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1, 2-quinones from Perovskia abrotanoides: new source of tanshinones. J Nat Prod. 2001;64(11):1398-1403.DOI: 10.1021/np010032f.

Zolfaghari B, Farahani A, Jannesari A, Aghaei M, Ghanadian M. New cytotoxic premyrsinane-type diterpenes from Euphorbia aleppica against breast cancer cells. Iran J Pharm Res. 2022;21(1): e127028-1-9.DOI: 10.5812/ijpr-127028

Rex JH, Alexander BD, Andes D, Arthington-Skaggs B, Chaturvedi V, Ghannoum MA, et al. Reference method for broth dilution antifungal susceptibility testing of yeasts. Vol 28, No. 14, 3rd edition. Pennsylvania, USA: Clinical and laboratory standards institute; 2008. pp. 1-13. Available at: https://clsi.org/media/1461/m27a3_sample.pdf.

Wayne P. Clinical and laboratory standards institute: reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. CLSI document M27-A3 and Supplement S. 2008;3:6-12.

Wayne P. Clinical and laboratory standards institute: performance standards for antimicrobial susceptibility testing.M100. Clinical and Laboratory Standards Institute (CLSI); 2018.

Khabnadideh S, Rezaei Z, Pakshir K, Zomorodian K, Ghafari N. Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Res Pharm Sci. 2012;7(2):65-72.

PMCID: PMC3501901.

Jabari M, Asghari G, Ghanadian M, Jafari A, Yousefi H, Jafari R, et al. Effect of Chaerophyllum macropodum extracts on Trichomonas vaginalis in vitro. J. HerbMed Pharmacol. 2015;4(2): 61-64.

Khan I, Ahmad W, Karim N, Ahmad M, Khan M, Tariq SA, et al. Antidiabetic activity and histopathological analysis of carnosol isolated from Artemisia indica Linn in streptozotocin-induced diabetic rats. Med Chem Res. 2017;26(2):335-343.

DOI:10.1007/s00044-016-1750-4.

Gajhede M, Anthoni U, Per Nielsen H, Pedersen EJ, Carnosol CC. Crystal structure, absolute configuration, and spectroscopic properties of a diterpene. J Crystallogr Spectrosc Res. 1990;20(2):165-171.

DOI: 10.1007/BF01160970.

Markham KR, Chari VM. Carbon-13 NMR spectroscopy of flavonoids. In: Harborne JB, Mabry TJ, editor. The flavonoids. New York: Springer; 1982. pp. 19-134.DOI: 10.1007/978-1-4899-2915-0.

Grayer RJ, Veitch NC, Kite GC, Price AM, Kokubun T. Distribution of 8-oxygenated leaf-surface flavones in the genus Ocimum. Phytochemistry. 2001;56(6):559-567.DOI: 10.1016/s0031-9422(00)00439-8.

Chari VM, Grayer-Barkmeijer RJ, Harborne JB, Österdahl B-G. An acylated allose-containing 8-hydroxyflavone glycoside from Veronica filiformis. Phytochemistry. 1981;20(8):1977-1979.DOI:10.1016/0031-9422(81)84048-4.

Chou NH, Parvez M, Ali MS, Ahmed S, Ahmed W. Cirsimaritin. Acta Crystallographica Section E: Structure Reports Online. 2002 ;58(3):o285-o287. DOI: 10.1107/S1600536802002660.

Miski M, Ulubelen A, Johansson C, Mabry TJ. Antibacterial activity studies of flavonoids from Salvia palaestina. J Nat Prod. 1983;46(6):874-875.DOI: 10.1021/np50030a007.

Lee SJ, Jang HJ, Kim Y, Oh HM, Lee S, Jung K, et al. Inhibitory effects of IL-6-induced STAT3 activation of bio-active compounds derived from Salvia plebeia R. Br. Process Biochem. 2016;51(12):2222-2229.DOI: 10.1016/j.procbio.2016.09.003.

Zeng H-H, Tu P-F, Zhou K, Wang H, Wang B-H, Lu J-F. Antioxidant properties of phenolic diterpenes from Rosmarinus officinalis. Acta Pharmacol Sin. 2001;22(12):1094-1098.PMID: 11749806.

Pizzale L, Bortolomeazzi R, Vichi S, Überegger E, Conte LS. Antioxidant activity of sage (Salvia officinalis and S fruticosa) and oregano (Origanum onites and O. indercedens) extracts related to their phenolic compound content. J Sci Food Agric. 2002;82(14):1645-1651.DOI: 10.1002/jsfa.1240.

Brieskorn CH, Fuchs A, Bredenberg JB-s, McChesney JD, Wenkert E. The structure of carnosol. J Org Chem. 1964;29(8):2293-2298.DOI: 10.1021/jo01031a044.

Rechinger KH, Druk A. Flora Iranica, Labiatae. Austria: Akademische Druck Verlagsantalt Graze; 1982. pp. 150-151.

Johnson JJ. Carnosol: a promising anti-cancer and anti-inflammatory agent. Cancer Lett. 2011;305(1):1-7.DOI: 10.1016/j.canlet.2011.02.005.

Jordán MJ, Lax V, Rota MC, Lorán S, Sotomayor JA. Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) methanolic extracts. J Agric Food Chem. 2012;60(38):9603-9608.DOI: 10.1021/jf302881t. Epub 2012 Sep 18.

Li X, Zhao L, Han J-J, Zhang F, Liu S, Zhu L, et al. Carnosol modulates Th17 cell differentiation and microglial switch in experimental autoimmune encephalomyelitis. Front immunol. 2018; 9:1807-1819.DOI:10.3389/fimmu.2018.01807.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.