Betaine attenuates oxidative stress and cognitive dysfunction in an amyloid β-induced rat model of Alzheimer’s disease

Fatemeh Alipourfard , Hooman Shajiee , Farzaneh Nazari-Serenjeh , Vida Hojati, Masoud Alirezaie

Abstract


Background and purpose: Increasing evidence indicates that oxidative stress is an important factor in the pathogenesis and progression of Alzheimer’s disease (AD). Betaine is trimethylglycine with antioxidant and neuroprotective properties. The present study aimed to evaluate the possible beneficial effects of betaine on oxidative stress and memory deficits induced by intrahippocampal injection of amyloid beta (Aß) in an AD model.

Experimental approach: Forty adult male Wistar rats were divided into 5 equal groups: the control and Aß groups which received oral gavage of saline (1 mL daily) for 14 days. The other 3 groups (betaine + Aß) received betaine (5, 10, and 15 mg/kg, orally) for 14 consecutive days. On the 15th day, all of the groups were injected bilaterallyintrahippocampal of Aß (5 µg/µL), except controls that were injected with normal saline as a vehicle. Seven days after the Aß injection, memory was assessed in a passive avoidance test. Changes in catalase activities and glutathione peroxidase, glutathione, and malondialdehyde concentrations were investigated to determine the antioxidant activity in the rat hippocampus. 

Findings/Results: Data showed that betaine pretreatment of Aß-injected rats improved memory in avoidance tasks. In addition, betaine pretreatment attenuated oxidative stress.

Conclusion and implications: The current findings showed that oral administration of betaine could prevent Aß-induced impairment of memory possibly through suppression of oxidative stress in the hippocampus area of rats.


Keywords


Alzheimer’s disease; Betaine; Amyloid beta; Learning and memory; Oxidative stress.

Full Text:

PDF

References


DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. MolNeurodegener. 2019;14(1):32,1-18.DOI: 10.1186/s13024-019-0333-5.

Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U. Oxidant/antioxidant imbalance in Alzheimer’s disease: therapeutic and diagnostic prospects. Oxid Med Cell Longev. 2018;2018:6435861,1-16.DOI: 10.1155/2018/6435861.

Collin F, Cheignon C, Hureau C. Oxidative stress as a biomarker for Alzheimer's disease. Biomark Med. 2018;12(3):201-203.DOI: 10.2217/bmm-2017-0456.

Butterfield DA, Swomley AM, Sultana R. Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal. 2013;19(8):823-835.DOI: 10.1089/ars.2012.5027.

Cai Z, Zhao B, Ratka A. Oxidative stress and β-amyloid protein in Alzheimer’s disease. Neuromolecular Med. 2011;13(4):223-250.DOI: 10.1007/s12017-011-8155-9.

Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450-464.DOI: 10.1016/j.redox.2017.10.014.

Day CR, Kempson SA. Betaine chemistry, roles, and potential use in liver disease. BiochBiophysActa. 2016;1860(6):1098-1106.DOI: 10.1016/j.bbagen.2016.02.001.

Chai GS, Jiang X, Ni ZF, Ma ZW, Xie AJ, Cheng XS, et al. Betaine attenuates Alzheimer‐like pathological changes and memory deficits induced by homocysteine. J Neurochem. 2013;124(3):388-396.DOI: 10.1111/jnc.12094.

Zhang CE, Tian Q, Wei W, Peng JH, Liu GP, Zhou XW, et al. Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol Aging. 2008;29(11):1654-1665.DOI: 10.1016/j.neurobiolaging.2007.04.015.

Alirezaei M. Betaine protects cerebellum from oxidative stress following levodopa and benserazide administration in rats. Iran J Basic Med Sci. 2015;18(10):950-957.PMID: 26730328.

Alirezaei M, Jelodar G, Niknam P, Ghayemi Z, Nazifi S. Betaine prevents ethanol-induced oxidative stress and reduces total homocysteine in the rat cerebellum. J PhysiolBiochem. 2011;67(4):605-612.DOI: 10.1007/s13105-011-0107-1.

Kunisawa K, Kido K, Nakashima N, Matsukura T, Nabeshima T, Hiramatsu M. Betaine attenuates memory impairment after water-immersion restraint stress and is regulated by the GABAergic neuronal system in the hippocampus. Eur J Pharmacol. 2017;796:122-130.DOI: 10.1016/j.ejphar.2016.12.007.

Leiteritz A, Dilberger B, Wenzel U, Fitzenberger E. Betaine reduces β-amyloid-induced paralysis through activation of cystathionine-β-synthase in an Alzheimer model of Caenorhabditiselegans. Genes Nutr. 2018;13:21,1-7.DOI: 10.1186/s12263-018-0611-9.

Mc Carty MF, O'Keefe JH, DiNicolantonio JJ. A diet rich in taurine, cysteine, folate, B12 and betaine may lessen risk for Alzheimer’s disease by boosting brain synthesis of hydrogen sulfide. Med Hypotheses. 2019;132:109356,1-5.DOI: 10.1016/j.mehy.2019.109356.

Kunisawa K, Kido K, Nakashima N, Matsukura T, Nabeshima T, Hiramatsu M. Betaine attenuates memory impairment after water-immersion restraint stress and is regulated by the GABAergic neuronal system in the hippocampus. Eur J Pharmacol. 2017;5:796,122-130.DOI: 10.1016/j.ejphar.2016.12.007.

Ibi D, Hirashima K, Kojima Y, Sumiya K, Kondo S, Yamamoto M, et al. Preventive effects of continuous betaine intake on cognitive impairment and aberrant gene expression in hippocampus of 3xTg mouse model of Alzheimer’s disease. J Alzheimers Dis. 2021;79(2):639-652.DOI: 10.3233/JAD-200972.

Ibi D, Tsuchihashi A, Nomura T, Hiramatsu M. Involvement of GAT2/BGT-1 in the preventive effects of betaine on cognitive impairment and brain oxidative stress in amyloid β peptide-injected mice. Eur J Pharmacol. 2019;842:57-63.DOI: 10.1016/j.ejphar.2018.10.037.

Mueed Z, Mehta D, Kumar Rai P, A. Kamal M, Poddar NM. Cross-interplay between osmolytes and mTOR in Alzheimer's disease pathogenesis. Curr Pharm Des. 2020;26(37):4699-4711.DOI: 10.2174/1381612826666200518112355.

Geng Y, Li C, Liu J, Xing G, Zhou L, Dong M, et al. Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biol Pharm Bull. 2010;33(5):836-843.DOI: 10.1248/bpb.33.836.

Zheng M, Liu J, Ruan Z, Tian S, Ma Y, Zhu J, et al. Intrahippocampal injection of Aβ1-42 inhibits neurogenesis and down-regulates IFN-γ and NF-κB expression in hippocampus of adult mouse brain. Amyloid. 2013;20(1):13-20.DOI: 10.3109/13506129.2012.755122.

Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Australia: Academic Press, Elsevier; 2006. pp. 115-118.

Yadegary A, Nazari-Serenjeh F, Darbandi N. Synergistic improvement effect of nicotine-ghrelin co-injection into the anterior ventral tegmental area on morphine-induced amnesia. Neuropeptides. 2020;80:102025,1-7.DOI: 10.1016/j.npep.2020.102025.

Pearson-Leary J, McNay EC. Intrahippocampal administration of amyloid-β 1-42 oligomers acutely impairs spatial working memory, insulin signaling, and hippocampal metabolism. J Alzheimers Dis. 2012;30(2):413-422.DOI: 10.3233/JAD-2012-112192.

Faucher P, Mons N, Micheau J, Louis C, Beracochea DJ. Hippocampal injections of oligomeric amyloid β-peptide (1-42) induce selective working memory deficits and long-lasting alterations of ERK signaling pathway. Front Aging Neurosci. 2016;7:245,1-15.DOI: 10.3389/fnagi.2015.00245.

Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis. 2017;57(4):1105-1121.DOI: 10.3233/JAD-161088.

Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci. 2005;8(8):1051-1058.DOI: 10.1038/nn1503.

Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neuro Sci. 2007;27(11):2866-2875.DOI: 10.1523/JNEUROSCI.4970-06.2007.

Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci. 2008;31(9):454-463.DOI: 10.1016/j.tins.2008.06.005.

Huang B, Hu X, Hu J, Chen Z, Zhao H. Betaine alleviates cognitive deficits in diabetic rats via PI3K/Akt signaling pathway regulation. Dement GeriatrCognDisord. 2020;49(3):1-9.DOI: 10.1159/000508624.

Ohnishi T, Balan S, Toyoshima M, Maekawa M, Ohba H, Watanabe A, et al. Investigation of betaine as a novel psychotherapeutic for schizophrenia. E Bio Medicine. 2019;45:432-446.DOI: 10.1016/j.ebiom.2019.05.062.

Teymuori M, Yegdaneh A, Rabbani M. Effects of piper nigrum fruit and Cinnamumzeylanicum bark alcoholic extracts, alone and in combination, on scopolamine-induced memory impairment in mice. Res Pharm Sci. 2021;16(5):474-481.DOI: 10.4103/1735-5362.323914.

Momtazi-borojeni AA, Sadeghi-Aliabadi H, Rabbani M, Ghannadi A, Abdollahi E. Cognitive enhancing of pineapple extract and juice in scopolamine-induced amnesia in mice. Res Pharm Sci. 2017;12(3): 257-264.DOI: 10.4103/1735-5362.207198.

Miwa M, Tsuboi M, Noguchi Y, Enokishima A, Nabeshima T, Hiramatsu M. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J Neuroinflammation. 2011;8:153,1-13.DOI: 10.1186/1742-2094-8-153.

Peter C, Braidy N, Zarka M, Welch J, Bridge W. Therapeutic approaches to modulating glutathione levels as a pharmacological strategy in Alzheimer’s disease. Curr Alzheimer Res. 2015;12(4):298-313.DOI: 10.2174/1567205012666150302160308.

Gu F, Chauhan V, Chauhan A. Glutathione redox imbalance in brain disorders. CurrOpinClinNutrMetab Care. 2015;18(1):89-95.DOI: 10.1097/MCO.0000000000000134.

Mandal PK, Saharan S, Tripathi M, Murari G. Brain glutathione levels-a novel biomarker for mild cognitive impairment and Alzheimer's disease. Biol Psychiatry. 2015;78(10):702-710.DOI: 10.1016/j.biopsych.2015.04.005.

Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J NeuropatholExp Neurol. 2010;69(2): 155-167.DOI: 10.1097/NEN.0b013e3181cb5af4.

Chang YT, Chang WN, Tsai NW, Huang CC, Kung CT, Su YJ, et al. The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. Biomed Res Int. 2014;2014:182303,1-14.DOI: 10.1155/2014/182303.

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med cell Longev. 2014;2014:360438,1-31.DOI: 10.1155/2014/360438.

Reed TT. Lipid peroxidation and neurodegenerative disease. Free RadicBiol Med. 2011;51(7):1302-1319.DOI: 10.1016/j.freeradbiomed.2011.06.027.

Benseny-Cases N, Klementieva O, Cotte M, Ferrer I, Cladera J. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains. Anal Chem. 2014;86(24):12047-12054.DOI: 10.1021/ac502667b.

Behl C, Davis J, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell. 1994;77(6):817-827.DOI: 10.1016/0092-8674(94)90131-7.

Milton NGN. Amyloid-beta binds catalase with high affinity and inhibits hydrogen peroxide breakdown. Biochem J. 1999;344:293-296.DOI: 10.1042/bj3440293.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.