Formulation design and physicochemical evaluation of an anti-inflammatory hydrogel patch containing Crinum asiaticum L. extract

Chonthicha Kongkwamcharoen , Arunporn Itharat , Wichan Ketjinda, Hyang-Yeol Lee, Gi-Seong Moon, Neal M. Davies


Background and purpose: Crinum asiaticum L. has long been used in Thai traditional medicine to treat osteoarthritis and inflammation by placing it on painful areas without further formulation design which is suboptimal for therapeutic use. Thus, this research aims to formulate a topical hydrogel patch containing                      C. asiaticum L. extracts (CAE) for anti-inflammatory effects.

Experimental approach: The hydrogel patches are made from carrageenan, locust bean gum, with glycerin as a plasticizer and contain CAE formulated by using response surface methodology based on Box-Behnken design for design, determination of the effect of independent factors on the tensile strength, and optimization of the hydrogel patch formulation. In vitro release and skin permeation studies using a modified Franz diffusion cell and anti-inflammatory activity were evaluated.

Findings/Results: The optimized CAE hydrogel patch showed a good correlation between predicted and observed tensile strength values and exerted its maximum cumulative lycorine release and permeation at 69.38 ± 2.78% and 48.51 ± 0.45%, respectively which were fit to Higuchi's kinetic model. The release rates were found to decrease with an increase in the polymer proportion of carrageenan and locust bean gum. In addition, the patch exerted potent in vitro anti-inflammatory activity with an IC50 value of 21.36 ± 0.78 μg/mL.

Conclusion and implication: The optimized CAE hydrogel patch application was successfully formulated with excellent mechanical properties, cumulative release, permeation, and anti-inflammatory effects. Thus, it has the potential to be further developed as a herbal application to relieve pain and inflammation. The in vivo anti-inflammatory effect of this delivery system should be further investigated.


Anti-inflammatory; Crinum asiaticum L.; Evaluation; Formulation design; Hydrogel patch; Optimization.

Full Text:



Di Nicola V. Degenerative osteoarthritis a reversible chronic disease. Regen Ther. 2020; 15:149-160.DOI: 10.1016/j.reth.2020.07.007.

Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford). 2010;49(9):1618-1631.DOI: 10.1093/rheumatology/keq045.

Chow YY, Chin KY. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020; 2020:8293921,1-19.DOI: 10.1155/2020/8293921.

Berenbaum F, Walker C. Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad Med. 2020;132(4):377-384.DOI: 10.1080/00325481.2020.1730669.

Wongrakpanich S, Wongrakpanich P, Melhado K, Rangaswami J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018;9(1):143-150.DOI: 10.14336/AD.2017.0306.

Makris UE, Kohler MJ, Fraenkel L. Adverse effects of topical nonsteroidal anti-inflammatory drugs in older adults with osteoarthritis: a systematic literature review. J Rheumatol. 2010;37(6):1236-1243.DOI: 10.3899/jrheum.090935.

Poetker DM, Reh DD. A comprehensive review of the adverse effects of systemic corticosteroids. Otolaryngol Clin North Am. 2010;43(4):753-768.DOI: 10.1016/j.otc.2010.04.003.

Haque M, Jahan S, Rahmatullah M. Ethnomedicinal uses of Crinum asiaticum: a review. World J Pharm Pharm Sci. 2014;3(9):119-128.

Pichiansunthorn C, Chawalit M, Jeerawong V. The describe of Osod Phra Narai textbook. Bangkok: Amarin Publishing; 2001. pp. 221–227.

Ghane SG, Attara UA, Yadav PB, Lekhak MM. Antioxidant, anti-diabetic, acetylcholinesterase inhibitory potential and estimation of alkaloids (lycorine and galanthamine) from Crinum species: An important source of anticancer and anti-Alzheimer drug. Ind Crops Prod. 2018;125:168-177.DOI: 10.1016/j.indcrop.2018.08.087.

Kongkwamcharoen C, Itharat A, Pipatrattanaseree W, Ooraikul B. Effects of various preextraction treatments of Crinum asiaticum leaf on its anti-inflammatory activity and chemical properties. Evid Based Complement Alternat Med. 2021; 2021:8850744,1-11.DOI: 10.1155/2021/8850744.

Mahomoodally MF, Sadeer NB, Suroowan S, Jugreet S, Lobine D, Rengasamy KRR. Ethnomedicinal, phytochemistry, toxicity and pharmacological benefits of poison bulb Crinum asiaticum L. S Afr J Bot. 2021;136:16-29.DOI: 10.1016/j.sajb.2020.06.004.

Rahman MA, Hossain SMA, Ahmed N, Islam MS. Analgesic and anti-inflammatory effects of Crinum asiaticum leaf alcoholic extract in animal models. Afr J Biotechnol. 2013;12(2):212-218.

DOI: 10.5897/AJB12.1431.

Ji YB, Tian P, Dai QC, Wang ST, Chen N. The present research situation of Crinum asiaticum alkaloids active ingredient. Appl Mech Mater. 2013;411-414:3181-3186.DOI: 10.4028/

Khalifa MF, Shihata EZA, Refaat J, Kamel MS. An overview on the chemical and biological aspects of lycorine alkaloid. J Adv Biomed Pharm Sci. 2018;1(2):41-49.DOI: 10.21608/JABPS.2018.4088.1016.

Kang J, Zhang Y, Cao X, Fan J, Li G, Wang Q, et al. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Immunopharmacol. 2012;12(1): 249-256.DOI: 10.1016/j.intimp.2011.11.018.

Park HJ, Zadeh MG, Suh JH, Choi HS. Lycorine attenuates autophagy in osteoclasts via an axis of mROS/TRPML1/TFEB to reduce LPS-induced bone loss. Oxid Med Cell Longev. 2019; 2019:8982147, 1-11.DOI: 10.1155/2019/8982147.

Department of Thai Traditional and Alternative Medicine, Guidelines for Certification of Folk Medicine. Bangkok: Thailand Ministry Publishing; 2019. pp. 1-80.

Stanos SP, Galluzzi KE. Topical therapies in the management of chronic pain. Postgrad Med. 2013; 125:25-33.DOI: 10.1080/00325481.2013.1110567111.

Nalamachu S, Gudin J. Characteristics of analgesic patch formulations. J Pain Res. 2020; 13:2343-2354.DOI: 10.2147/JPR.S270169.

Nilforoushzadeh MA, Amirkhani MA, Zarrintaj P, Salehi Moghadam A, Mehrabi T, Alavi S, et al. Skin care and rejuvenation by cosmeceutical facial mask. J Cosmet Dermatol. 2018;17(5):693-702.DOI: 10.1111/jocd.12730.

Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965-977.DOI: 10.1016/j.talanta.2008.05.019.

Candioti LV, De Zan MM, Camara MS, Goichoechea HC. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta. 2014; 124:123-138.DOI: 10.1016/j.talanta.2014.01.034.

Fukuda IM, Pinto CFF, Moreira CDS, Saviano AM, Lourenco FR. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Braz J Pharm Sci. 2018;54:e01006,1-16.DOI: 10.1590/s2175-97902018000001006.

Dhoot AS, Fernandes GJ, Naha A, Rathnanand M, Kumar L. Design of experiments in pharmaceutical development. Pharm Chem J. 2019;53(8):730-735.DOI: 10.1007/s11094-019-02070-4.

Choudhary V, Shivakumar H, Ojha H. Curcumin-loaded liposomes for wound healing: preparation, optimization, in-vivo skin permeation and bio evaluation. J Drug Deliv Sci Technol. 2018; 49:683-691.DOI: 10.1016/j.jddst.2018.12.008.

Parhi, R, Suresh P, Patnaik S. Application of response surface methodology for design and optimization of reservoir-type transdermal patch of simvastatin. Curr Drug Deliv. 2016;13(5):742-753.DOI: 10.2174/1567201812666151009115944.

Achirasena W, Ketjinda W, Sakunphueak A. Formulation and physical evaluation of topical patch containing Derris scandens. Interprof J Health Sci. 2018;16(2):135-146.DOI: 10.14456/ijhs.2018.5.

Suksaeree J, Nawathong N, Anakkawee R, Pichayakorn W. Formulation of polyherbal patches based on polyvinyl alcohol and hydroxypropylmethyl cellulose: characterization and in vitro evaluation. AAPS Pharm Sci Tech. 2017;18(7):2427-2436.DOI: 10.1208/s12249-017-0726-0.

Patel NA, Patel NJ, Patel RP. Design and evaluation of transdermal drug delivery system for curcumin as an anti-inflammatory drug. Drug Dev Ind Pharm. 2009;35(2):234-242.DOI: 10.1080/03639040802266782.

Raknam P, Pinsuwan S, Amnuaikit T. Phenylethyl resorcinol loaded in liposomal cream formulation for cosmeceutical application. J Pharm Res Int. 2020;32(1):64-76.DOI: 10.9734/JPRI/2020/v32i130396.

Makchuchit S, Rattarom R, Itharat A. The anti-allergic and anti-inflammatory effects of Benjakul extract (a Thai traditional medicine), its constituent plants and its some pure constituents using in vitro experiments. Biomed Pharmacother. 2017; 89:1018-1026.DOI: 10.1016/j.biopha.2017.02.066.

Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33-42.

DOI: 10.1038/nrrheum.2010.196.

Asmawi MZ, Arafat OM, Amirin S, Eldeen IMS. in vivo antinociceptive activity of leaf extract of Crinum asiaticum and phytochemical analysis of the bioactive fractions. Int J Pharmacol. 2011;7(1):125-129.DOI: 10.3923/ijp.2011.125.129.

Petitjean M, Isasi JR. Locust bean gum, a vegetable hydrocolloid with industrial and biopharmaceutical applications. Molecules. 2022;27(23):8265,1-17.DOI: 10.3390/molecules27238265.

de Jesus Raposo MF, de Morais AMB, de Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs. 2015;13(5):2967-3028.


Zhu Y, Bhandari B, Prakash S. Tribo-rheometry behaviour and gel strength of κ-carrageenan and gelatin solutions at concentrations, pH and ionic conditions used in dairy products. Food Hydrocoll. 2018;84:292-302.DOI: 10.1016/j.foodhyd.2018.06.016.

Jantrawut P, Chaiwarit T, Jantanasakulwong T, Brachais CH, Chambin O. Effect of plasticizer type on tensile property and in vitro indomethacin release of thin films based on low-methoxyl pectin. Polymers. 2017;9(7):289-293.DOI: 10.3390/polym9070289.

Rinanda SA, Nastabiq M, Raharjo SH, Hayati SK, Yaqin MA, Ratnawati. The effect of combination of sugar palm fruit, carrageenan, and citric acid on mechanical properties of biodegradable film. J Phys Conf Ser. 2017;909(1):012085,1-5.DOI:10.1088/1742-6596/909/1/012085.

Barak S, Mudgil D. Locust bean gum: processing, properties and food applications- a review. Int J Biol Macromol. 2014;66:74-80.DOI: 10.1016/j.ijbiomac.2014.02.017.

Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS, Vicente AA. Synergistic effects between k-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll. 2012;29(2):280-289.DOI: 10.1016/J.FOODHYD.2012.03.004.

Ballesteros-Mártinez L, Pérez-Cervera C, Andrade-Pizarro R. Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS J. 2020;20:1-9.DOI: 10.1016/j.nfs.2020.06.002.

Tarique J, Sapuan SM, Khalina A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci Rep. 2021;11(1):13900,1-17.DOI: 10.1038/s41598-021-93094-y.

Dionisio M, Grenha A. Locust bean gum: Exploring its potential for biopharmaceutical applications. J Pharm Bioallied Sci. 2012;4(3):175-185.DOI: 10.4103/0975-7406.99013.

Kaur R, Sharma A, Puri V, Singh I. Preparation and characterization of biocomposite films of carrageenan/locust bean gum/montmorrillonite for transdermal delivery of curcumin. Bioimpacts. 2019; 9(1):37-43.DOI: 10.15171/bi.2019.05.

Biswas D, Das S, Mohanto S., Mantry S. Extraction, modification, and characterization of natural polymers used in transdermal drug delivery system: an updated review. Asian J Pharm Clin Res. 2020;13(7):10-20.DOI: 10.22159/ajpcr.2020.v13i7.37756.

Bjorklund S, Engblom J, Thuresson K., Sparr E. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions. Eur J Pharm Sci. 2013;50(5):638-645.DOI: 10.1016/j.ejps.2013.04.022.

Pichayakorn W, Suksaere J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC. Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: effect of polymer and plasticizer blends. J Membr Sci. 2012;411-412:81-90.DOI: 10.1016/j.memsci.2012.04.017.

Pettinelli N, Rodriguez-Llamazares S, Bouza R, Barral L, Feijoo-Bandin S, Lago F. Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications. Int J Pharm. 2020;589:119828,1-9.DOI: 10.1016/j.ijpharm.2020.119828.

Lamoral-Theys D, Andolfi A, Van Goietsenoven G, Cimmino A, Le Calve B, Wauthoz N, et al. Lycorine, the main phenanthridine amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight. J Med Chem. 2009;52(20):6244-6256.DOI: 10.1021/jm901031h.

Lamoral-Theys D, Decaestecker C, Mathieu V, Dubois J, Kornienko A, Kiss R, et al. Lycorine and its derivatives for anticancer drug design. Mini Rev Med Chem. 2010;10(1):41-50.DOI: 10.2174/138955710791112604.

McNulty J, Nair JJ, Bastida J, Pandey S, Griffin C. Structure-activity studies on the lycorine pharmacophore: a potent inducer of apoptosis in human leukemia cells. Phytochemistry. 2009;70(7):913-919.DOI: 10.1016/j.phytochem.2009.04.012.

Necas J, Bartosikova L. Carrageenan: a review. Vet Med. 2013;58(4):187-205.DOI: 10.17221/6758-VETMED.

Yuan L, Wu Y, Qin Y, Yong H, Liu J. Recent advances in the preparation, characterization and applications of locust bean gum-based films. J Renew Mater. 2020;8(12):1565-1579.DOI: 10.32604/jrm.2020.014562.

Williams PA. Molecular interactions of plant and algal polysaccharides. Struct Chem. 2009;20(2):299-308.DOI: 10.1007/s11224-009-9420-5.

Nguyen BT, Nicolai T, Benyahia L, Chassenieux C. Synergistic effects of mixed salt on the gelation of κ-carrageenan. Carbohydr Polym. 2014;112:10-15.DOI: 10.1016/j.carbpol.2014.05.048.

Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: drug delivery systems and other biomedical applications. Mar Drugs. 2020;18(11):583,1-39.DOI: 10.3390/md18110583.

Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602-2663.DOI: 10.1021/acs.chemrev.5b00346.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.