Sub-cellular sequestration of alkaline drugs in lysosomes: new insights for pharmaceutical development of lysosomal fluid

Malaz Yousef , Tyson S. Le, Jieyu Zuo, Chulhun Park, Nadia Bou Chacra, Neal M. Davies , Raimar Löbenberg

Abstract


Background and purpose: Lysosomal-targeted drug delivery can open a new strategy for drug therapy. However, there is currently no universally accepted simulated or artificial lysosomal fluid utilized in the pharmaceutical industry or recognized by the United States Pharmacopeia (USP).

Experimental approach: We prepared a simulated lysosomal fluid (SLYF) and compared its composition to a commercial artificial counterpart. The developed fluid was used to test the dissolution of a commercial product (Robitussin®) of a lysosomotropic drug (dextromethorphan) and to investigate in-vitro lysosomal trapping of two model drugs (dextromethorphan and (+/-) chloroquine). 

Findings/Results: The laboratory-prepared fluid or SLYF contained the essential components for the lysosomal function in concentrations reflective of the physiological values, unlike the commercial product. Robitussin® passed the acceptance criteria for the dissolution of dextromethorphan in 0.1 N HCl medium (97.7% in less than 45 min) but not in the SLYF or the phosphate buffer media (72.6% and 32.2% within                    45 min, respectively). Racemic chloroquine showed higher lysosomal trapping (51.9%) in the in-vitro model than dextromethorphan (28.3%) in a behavior supporting in-vivo findings and based on the molecular descriptors and the lysosomal sequestration potential of both. 

Conclusion and implication: A standardized lysosomal fluid was reported and developed for in-vitro investigations of lysosomotropic drugs and formulations.

 


Keywords


Biological fluids; CADs; Lysosomal trapping; Simulated lysosomal fluid.

Full Text:

PDF

References


Trapp S, Rosania GR, Horobin RW, Kornhuber J. Quantitative modeling of selective lysosomal targeting for drug design. Eur Biophys J. 2008;37(8):1317-1328.DOI: 10.1007/s00249-008-0338-4.

Schmitt MV, Lienau P, Fricker G, Reichel A. Quantitation of lysosomal trapping of basic lipophilic compounds using in-vitro assays and in-silico predictions based on the determination of the full pH profile of the endo-/lysosomal system in rat hepatocytes. Drug Metab Dispos. 2019;47(1):49-57.DOI: 10.1124/dmd.118.084541.

Norinder U, Tuck A, Norgren K, Kos VM. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed Pharmacother. 2020;130:110582,1-7.DOI: 10.1016/j.biopha.2020.110582.

Lane TR, Dyall J, Mercer L, Goodin C, Foil DH, Zhou H, et al. Repurposing Pyramax® for the treatment of ebola virus disease: additivity of the lysosomotropic pyronaridine and non-lysosomotropic artesunate. BioRxiv. 2020;1-34.DOI: 10.1101/2020.04.25.061333.

Hu M, Carraway KL III. Repurposing cationic amphiphilic drugs and derivatives to engage lysosomal cell death in cancer treatment. Front Oncol. 2020;10:605361,1-7.DOI: 10.3389/fonc.2020.605361.

Gong Y, Duvvuri M, Krise JP. Separate roles for the Golgi apparatus and lysosomes in the sequestration of drugs in the multidrug-resistant human leukemic cell line HL-60. J Biol Chem. 2003;278(50):50234-50239.DOI: 10.1074/jbc.M306606200.

Trapp S, Horobin RW. A predictive model for the selective accumulation of chemicals in tumor cells. Eur Biophys J. 2005;34(7):959-966.DOI: 10.1007/s00249-005-0472-1.

Baltazar GC, Guha S, Lu W, Lim J, Boesze-Battaglia K, Laties AM, et al. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PloS One. 2012;7(12):e49635,1-10.DOI: 10.1371/journal.pone.0049635.

Xue F, Wei P, Ge X, Zhong Y, Cao C, Yu D, et al. A pH-responsive organic photosensitizer specifically activated by cancer lysosomes. Dyes Pigm. 2018;156:285-290.DOI: 10.1016/j.dyepig.2018.04.008.

Macintyre AC, Cutler DJ. The potential role of lysosomes in tissue distribution of weak bases. Biopharm Drug Dispos. 1988;9(6):513-526.DOI: 10.1002/bod.2510090602.

Radisavljevic Z. Lysosome activates AKT inducing cancer and metastasis. J Cell Biochem. 2019;120(8):12123-12127.DOI: 10.1002/jcb.28752.

Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins:trafficking meets function. Nat Rev Mol Cell Biol. 2009;10(9): 623-635.DOI: 10.1038/nrm2745.

Kazmi F, Hensley T, Pope C, Funk RS, Loewen GJ, Buckley DB, et al. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic)

drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab Dispos. 2013;41(4):897-905.DOI: 10.1124/dmd.112.050054.

Govindaraj J, Govindaraj K, Padmavathy K, Jayesh R, Mathangi, Vidyarekha U. Review On lysosomal enzymes. Eur J Mol Clin Med. 2020;7(8):1688-1692.

Christensen KA, Myers JT, Swanson JA. pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci. 2002;115(3):599-607.DOI: 10.1242/jcs.115.3.599.

DiCiccio JE, Steinberg BE. Lysosomal pH and analysis of the counter ion pathways that support acidification. J Gen Physiol. 2011;137(4): 385-390.DOI: 10.1085/jgp.201110596.

De Duve C, De Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974;23(18):2495-2531.DOI: 10.1016/0006-2952(74)90174-9.

Ndolo RA, Luan Y, Duan S, Forrest ML, Krise JP. Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro. PloS One. 2012;7(11):e49366,1-9.DOI: 10.1371/journal.pone.0049366.

Marceau F, Bawolak MT, Lodge R, Bouthillier J, Gagné-Henley A, Gaudreault RC, et al. Cation trapping by cellular acidic compartments:beyond the concept of lysosomotropic drugs. Toxicol Appl Pharmacol. 2012;259(1):1-12.DOI: 10.1016/j.taap.2011.12.004.

Daniel WA, Wöjcikowski J. Contribution of lysosomal trapping to the total tissue uptake of psychotropic drugs. Pharmacol Toxicol. 1997;80(2):62-68.DOI: 10.1111/j.1600-0773.1997.tb00285.x.

Homewood CA, Warhurst DC, Peters W, Baggaley VC. Lysosomes, pH and the anti-malarial action of chloroquine. Nature. 1972;235(5332):50-52.

DOI: 10.1038/235050a0.

Daniel WA, Bickel MH, Honegger UE. The contribution of lysosomal trapping in the uptake of desipramine and chloroquine by different tissues. Pharmacol Toxicol. 1995;7(6):402-406.DOI: 10.1111/j.1600-0773.1995.tb01050.x.

Fong KY, Wright DW. Hemozoin and antimalarial drug discovery. Future Med Chem. 2013;5(12): 1437-1450.DOI: 10.4155/fmc.13.113.

Kornhuber J, Reichel M, Tripal P, Groemer TW, Henkel AW, Mühle C, et al. The role of ceramide in major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2009;259(Suppl 2):S199-S204.DOI: 10.1007/s00406-009-0061-x.

Beckmann N, Sharma D, Gulbins E, Becker KA, Edelmann B. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons. Front Physiol. 2014;5:331,1-15.DOI: 10.3389/fphys.2014.00331.

Llanos S, Megias D, Blanco-Aparicio C, Hernández-Encinas E, Rovira M, Pietrocola F, et al. Lysosomal trapping of palbociclib and its functional implications. Oncogene. 2019;38(20):3886-3902.DOI: 10.1038/s41388-019-0695-8.

Dhillon S. Palbociclib:first global approval. Drugs. 2015;75(5):543-551.DOI: 10.1007/s40265-015-0379-9.

Salata C, Calistri A, Parolin C, Baritussio A, Palù G. Antiviral activity of cationic amphiphilic drugs. Expert Rev Anti Infect Ther. 2017;15(5):483-492.DOI: 10.1080/14787210.2017.1305888.

Naghipour S, Ghodousi M, Rahsepar S, Elyasi S. Repurposing of well-known medications as antivirals: hydroxychloroquine and chloroquine-from HIV-1 infection to COVID-19. Expert Rev Anti Infect Ther. 2020;18(11):1119-1133.DOI: 10.1080/14787210.2020.1792291.

Vaugeois JM. Psychotropics drugs with cationic amphiphilic properties may afford some protection against SARS-CoV-2: a mechanistic hypothesis. Psychiatry Res. 2020;291:113220,1-2.DOI: 10.1016/j.psychres.2020.113220.

Sacramento CQ, Fintelman-Rodrigues N, Dias SSG, Temerozo JR, Da Silva APD, da Silva CS, et al. Unlike chloroquine, mefloquine inhibits SARS-CoV-2 infection in physiologically relevant cells and does not induce viral variants. BioRxiv. 2021;1-25DOI: 10.1101/2021.07.21.451321.

DeWald LE, Johnson JC, Gerhardt DM, Torzewski LM, Postnikova E, Honko AN, et al. In vivo activity of amodiaquine against Ebola virus infection. Sci Rep. 2019;9(1):20199,1-12.DOI: 10.1038/s41598-019-56481-0.

Vela JM. Repurposing sigma-1 receptor ligands for COVID-19 therapy? Front Pharmacol. 2020;11:582310,1-23.DOI: 10.3389/fphar.2020.582310.

Nobile B, Durand M, Olié E, Guillaume S, Molès JP, Haffen E, et al. The anti-inflammatory effect of the tricyclic antidepressant clomipramine and its high penetration in the brain might be useful to prevent the psychiatric consequences of SARS-CoV-2 infection. Front Pharmacol. 2021;12:615695,1-10.DOI: 10.3389/fphar.2021.615695.

Schafer A, Xiong R, Cooper L, Nowar R, Lee H, Li Y, et al. Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry. PLoS Pathog. 2021;17(2):e1009312,1-21.DOI: 10.1371/journal.ppat.1009312.

Gunesch AP, Zapatero-Belinchón FJ, Pinkert L, Steinmann E, Manns MP, Schneider G, et al. Filovirus antiviral activity of cationic amphiphilic drugs is associated with lipophilicity and ability to induce phospholipidosis. Antimicrob Agents Chemother. 2020;64(8):e00143-20,1-39.DOI: 10.1128/AAC.00143-20.

Oliver ME, Hinks TSC. Azithromycin in viral infections. Rev Med Virol. 2021;31(2):e2163,1-13.DOI: 10.1002/rmv.2163.

Bogush TA, Polezhaev BB, Mamichev IA, Bogush EA, Polotsky BE, Tjulandin SA, et al. Tamoxifen never ceases to amaze: new findings on non-estrogen receptor molecular targets and mediated effects. Cancer Invest. 2018;36(4):211-220.DOI: 10.1080/07357907.2018.1453933.

Johansen LM, Brannan JM, Delos SE, Shoemaker CJ, Stossel A, Lear C, et al. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection. Sci Transl Med. 2013;5(190):190ra79,1-14.DOI: 10.1126/scitranslmed.3005471.

Allegretti M, Cesta MC, Zippoli M, Beccari A, Talarico C, Mantelli F, et al. Repurposing the estrogen receptor modulator raloxifene to treat SARS-CoV-2 infection. Cell Death Differ. 2022;29(1):156-166.

DOI: 10.1038/s41418-021-00844-6.

Zhitomirsky B, Assaraf YG. Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat. 2016;24:23-33.DOI: 10.1016/j.drup.2015.11.004.

Halaby R. Influence of lysosomal sequestration on multidrug resistance in cancer cells. Cancer Drug Resist. 2019;2(1):31-42.DOI: 10.20517/cdr.2018.23.

Logan R, Funk RS, Axcell E, Krise JP. Drug-drug interactions involving lysosomes:mechanisms and potential clinical implications. Expert Opin Drug Metab Toxicol. 2012;8(8):943-958.DOI: 10.1517/17425255.2012.691165.

Azijli K, Gotink KJ, Verheul HM. The potential role of lysosomal sequestration in sunitinib resistance of renal cell cancer. J Kidney Cancer VHL. 2015;2(4):195-203.DOI: 10.15586/jkcvhl.2015.44.

Anderson N, Borlak J. Drug-induced phospholipidosis. FEBS Lett. 2006;580(23):5533-5540.DOI: 10.1016/j.febslet.2006.08.061.

Breiden B, Sandhoff K. Emerging mechanisms of drug-induced phospholipidosis. Biol Chem. 2019;401(1):31-46.DOI: 10.1515/hsz-2019-0270.

Müller-Höcker J, Schmid H, Weiss M, Dendorfer U, Braun GS. Chloroquine-induced phospholipidosis of the kidney mimicking Fabry's disease:case report and review of the literature. Hum Pathol. 2003;34(3):285-289.DOI: 10.1053/hupa.2003.36.

Fischer H, Atzpodien EA, Csato M, Doessegger L, Lenz B, Schmitt G, et al. In silico assay for assessing phospholipidosis potential of small druglike molecules:training, validation, and refinement using several data sets. J Med Chem. 2012;55(1):126-139.DOI: 10.1021/jm201082a.

Sawada H, Takami K, Asahi S. A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction mechanism and establishment of a novel in vitro screening system. Toxicol Sci. 2005;83(2):282-292.DOI: 10.1093/toxsci/kfh264.

Vitovic P, Alakoskela JM, Kinnunen PKJ. Assessment of drug-lipid complex formation by a high-throughput Langmuir-balance and correlation to phospholipidosis. J Med Chem. 2008;51(6):1842-1848.DOI: 10.1021/jm7013953.

Hanumegowda UM, Wenke G, Regueiro-Ren A, Yordanova R, Corradi JP, Adams SP. Phospholipidosis as a function of basicity, lipophilicity, and volume of distribution of compounds. Chem Res Toxicol. 2010;23(4):749-755.DOI: 10.1021/tx9003825.

Bauch C, Bevan S, Woodhouse H, Dilworth C, Walker P. Predicting in vivo phospholipidosis-inducing potential of drugs by a combined high content screening and in silico modelling approach. Toxicol In Vitro. 2015;29(3):621-630.DOI: 10.1016/j.tiv.2015.01.014.

Shayman JA, Abe A. Drug induced phospholipidosis:an acquired lysosomal storage disorder. Biochim Biophys Acta. 2013;1831(3):602-611.DOI: 10.1016/j.bbalip.2012.08.013.

Kazmi F, Funk R, Pope C, Czerwinski M, Yerino P, Bolliger P, et al. A robust method to identify compounds that undergo intracellular lysosomal sequestration. Drug Metab Rev. 2011;43: 136-137.

Ufuk A, Assmus F, Francis L, Plumb J, Damian V, Gertz M, et al. In vitro and in silico tools to assess extent of cellular uptake and lysosomal sequestration of respiratory drugs in human alveolar macrophages. Mol Pharm. 2017;14(4):1033-1046.DOI: 10.1021/acs.molpharmaceut.6b00908.

Easwaranathan A, Inci B, Ulrich S, Brunken L, Nikiforova V, Norinder U, et al. Quantification of intracellular accumulation and retention of lysosomotropic macrocyclic compounds by high-throughput imaging of lysosomal changes. J Pharm Sci. 2019;108(1):652-660.DOI: 10.1016/j.xphs.2018.11.001.

Garcia DS, Sjödin M, Hellstrandh M, Norinder U, Nikiforova V, Lindberg J, et al. Cellular accumulation and lipid binding of perfluorinated alkylated substances (PFASs)-A comparison with lysosomotropic drugs. Chem Biol Interact. 2018;281:1-10.DOI: 10.1016/j.cbi.2017.12.021.

Ashoor R, Yafawi R, Jessen B, Lu S. The contribution of lysosomotropism to autophagy perturbation. PloS One. 2013;8(11):e82481,1-15.DOI: 10.1371/journal.pone.0082481.

Ufuk A, Somers G, Houston JB, Galetin A. In vitro assessment of uptake and lysosomal sequestration of respiratory drugs in alveolar macrophage cell line NR8383. Pharm Res. 2015;32(12):3937-3951.DOI: 10.1007/s11095-015-1753-8.

Marques MRC, Löbenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011;18(3):15-28.DOI: 10.14227/DT180311P15.

Innes E, Yiu HHP, McLean P, Brown W, Boyles M. Simulated biological fluids-a systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Crit Rev Toxicol. 2021;51(3):217-248.DOI: 10.1080/10408444.2021.1903386.

Pelfrêne A, Cave MR, Wragg J, Douay F. In vitro investigations of human bioaccessibility from reference materials using simulated lung fluids. Int J Environ Res Public Health. 2017;14(2):112,1-15.

DOI: 10.3390/ijerph14020112.

Stefaniak AB, Guilmette RA, Day GA, Hoover MD, Breysse PN, Scripsick RC. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution. Toxicol In Vitro. 2005;19(1):123-134.DOI: 10.1016/j.tiv.2004.08.001.

Colombo C, Monhemius AJ, PlantJA. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol Environ Saf. 2008;71(3): 722-730.DOI: 10.1016/j.ecoenv.2007.11.011.

Midander K, Pan J, Wallinder IO, Leygraf C. Metal release from stainless steel particles in vitro-influence of particle size. J Environ Monit. 2007;9(1):74-81.DOI: 10.1039/B613919A.

Kastury F, Smith E, Karna RR, Scheckel KG, Juhasz AL. Methodological factors influencing inhalation bioaccessibility of metal(loid)s in PM2.5 using simulated lung fluid. Environ Pollut. 2018;241:930-937.DOI: 10.1016/j.envpol.2018.05.094.

Bolger MB, Macwan JS, Sarfraz M, Almukainzi M, Löbenberg R. The irrelevance of in vitro dissolution in setting product specifications for drugs like dextromethorphan that are subject to lysosomal trapping. J Pharm Sci. 2019;108(1):268-278.DOI: 10.1016/j.xphs.2018.09.036.

Kubo Y, Yamada M, Konakawa S, Akanuma SI, Hosoya KI. Uptake study in lysosome-enriched fraction: critical involvement of lysosomal trapping in quinacrine uptake but not fluorescence-labeled verapamil transport at blood-retinal Barrier. Pharmaceutics. 2020;12(8):747,1-13.DOI: 10.3390/pharmaceutics12080747.

Xu H, RenD. Lysosomal physiology. Annu Rev Physiol. 2015;77:57-80.DOI: 10.1146/annurev-physiol-021014-071649.

Souza JB, Castro LML, Siqueira MF, Savedra RML, Silva-Barcellos NM. Evaluation of the losartan solubility in the biowaiver context by shake-flask method and intrinsic dissolution. Pharm Dev Technol. 2019;24(3):283-292.DOI: 10.1080/10837450.2018.1472610.

Bezzina JP, Ogden MD, Moon EM, Soldenhoff KL. REE behavior and sorption on weak acid resins from buffered media. J Ind Eng Chem. 2018;59:440-455.DOI: 10.1016/j.jiec.2017.11.005.

Davidson AG, Mkoji LM. The simultaneous assay of triprolidine, pseudoephedrine and dextromethorphan in combined preparations by derivative-difference spectrophotometry. J Pharm Biomed Anal. 1988;6(5):449-460.DOI: 10.1016/0731-7085(88)80012-8.

Gao Z, Yu L, Clark S, Trehy M, Moore T, Westenberger B, et al. Dissolution testing for bioavailability of over-the-counter (OTC) drugs-a technical note. AAPS Pharm Sci Tech. 2015;16(5):1227-1233.DOI: 10.1208/s12249-015-0297-x.

Mostafa HF, Ibrahim MA, Sakr A. Development and optimization of dextromethorphan hydrobromide oral disintegrating tablets:effect of formulation and process variables. Pharm Dev Technol. 2013;18(2):454-463.DOI: 10.3109/10837450.2012.710237.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.