Evaluation of the osteogenic effect of apigenin on human mesenchymal stem cells by inhibiting inflammation through modulation of NF-κB/ IκBα

Azita Asadi , Farjam Goudarzi, Mustafa Ghanadian, Adel Mohammadalipour

Abstract


Background and purpose: Apigenin has stimulatory effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) as well as anti-inflammatory properties. This study investigated the osteogenic differentiation of hMSCs in inflammatory conditions treated with apigenin focusing on nuclear factor kappa-light-chain-enhancer of activated B (NF-кB), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammatory pathways.

Experimental approach: Along with osteogenic differentiation of the hMSCs, they became inflamed with lipopolysaccharide (LPS)/palmitic acid (PA) and treated with apigenin. Alizarin red staining, alkaline phosphatase (ALP) activity, and Runt-related transcription factor 2 (RUNX2) gene expression were used to determine the degree of differentiation. Also, gene expression of NLRP3 was performed along with protein expression of interleukin 1-beta (IL-1β), NF-кB, and IκBα. 

Findings / Results: Apigenin was shown to be effective in neutralizing the inhibitory impact of LPS/PA on osteogenesis. Apigenin increased MSC osteogenic capacity by inhibiting NLRP3 expression and the activity of caspase-1. It was also associated with a considerable decrease in the protein expression of NF-κB and IκBα, as well as IL-1β, in these cells.

Conclusion and implications: The effects of apigenin on osteogenesis under inflammatory conditions were cautiously observed.

 

 


Keywords


Apigenin; Inflammation; Mesenchymal stem cells; NF-кB; NLRP3; RUNX2.

Full Text:

PDF

References


Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22(17):R741-R752.DOI: 10.1016/j.cub.2012.07.024.

Yu B, Wang CY. Osteoporosis: the result of an ‘aged’bone microenvironment. Trends Mol Med. 2016;22(8):641-644.DOI: 10.1016/j.molmed.2016.06.002.

Bultink IEM, Lems WF. Osteoarthritis and osteoporosis: what is the overlap? Curr Rheumatol Rep. 2013;15(5):328.DOI: 10.1007/s11926-013-0328-0.

Salari N, Ghasemi H, Mohammadi L, Behzadi MH, Rabieenia E, Shohaimi S, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1):609. DOI: 10.1186/s13018-021-02772-0.

Li R, Liang L, Dou Y, Huang Z, Mo H, Wang Y, et al. Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Biomed Res Int. 2015;2015:873251. DOI: 10.1155/2015/873251.

Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35-43. DOI: 10.1038/ncprheum0070.

Wang L, Chen K, Wan X, Wang F, Guo Z, Mo Z. NLRP3 inflammasome activation in mesenchymal stem cells inhibits osteogenic differentiation and enhances adipogenic differentiation. Biochem Biophys Res Commun. 2017;484(4):871-887.DOI: 10.1016/j.bbrc.2017.02.007.

He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41(12):1012-1021. DOI: 10.1016/j.tibs.2016.09.002.

Gibon E, Lu LY, Nathan K, Goodman SB. Inflammation, ageing, and bone regeneration. J Orthop Translat. 2017;10:28-35. DOI: 10.1016/j.jot.2017.04.002.

Jolette J, Attalla B, Varela A, Long GG, Mellal N, Trimm S, et al. Comparing the incidence of bone tumors in rats chronically exposed to the selective PTH type 1 receptor agonist abaloparatide or PTH (1-34). Regul Toxicol Pharmacol. 2017;86:356-365. DOI: 10.1016/j.yrtph.2017.04.001.

Papapetrou PD. Bisphosphonate-associated adverse events. Hormones (Athens). 2009;8(2):96-110. DOI: 10.14310/horm.2002.1226.

Weaver CM, Alekel DL, Ward WE, Ronis MJ. Flavonoid intake and bone health. J Nutr Gerontol Geriatr. 2012;31(3):239-253. DOI: 10.1080/21551197.2012.698220.

Chen P, Huo X, Liu W, Li K, Sun Z, Tian J. Apigenin exhibits anti-inflammatory effects in LPS-stimulated BV2 microglia through activating GSK3β/Nrf2 signaling pathway. Immunopharmacol Immunotoxicol. 2020;42(1):9-16. DOI: 10.1080/08923973.2019.1688345.

Kang OH, Lee JH, Kwon DY. Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in the HMC-1 cells. Immunopharmacol Immunotoxicol. 2011;33(3): 473-479. DOI: 10.3109/08923973.2010.538851.

Bandyopadhyay S, Lion JM, Mentaverri R, Ricupero DA, Kamel S, Romero JR, et al. Attenuation of osteoclastogenesis and osteoclast function by apigenin. Biochem Pharmacol. 2006;72(2):184-197. DOI: 10.1016/j.bcp.2006.04.018.

Choi EM. Apigenin increases osteoblastic differentiation and inhibits tumor necrosis factor-α-induced production of interleukin-6 and nitric oxide in osteoblastic MC3T3-E1 cells. Pharmazie. 2007;62(3):216-220. DOI: 10.1691/ph.2007.3.6629.

Zhang X, Zhou C, Zha X, Xu Z, Li L, Liu Y, et al. Apigenin promotes osteogenic differentiation of human mesenchymal stem cells through JNK and p38 MAPK pathways. Mol Cell Biochem. 2015;407(1-2):41-50. DOI: 10.1007/s11010-015-2452-9.

Welch AA, Hardcastle AC. The effects of flavonoids on bone. Curr Osteoporos Rep. 2014;12(2):205-210. DOI: 10.1007/s11914-014-0212-5.

Goudarzi F, Tayebinia H, Karimi J, Habibitabar E, Khodadadi I. Calcium: a novel and efficient inducer of differentiation of adipose-derived stem cells into neuron-like cells. J Cell Physiol. 2018;233(11): 8940-8951. DOI: 10.1002/jcp.26826.

Zhang HT, Zha ZG, Cao JH, Liang ZJ, Wu H, He MT, et al. Apigenin accelerates lipopolysaccharide induced apoptosis in mesenchymal stem cells through suppressing vitamin D receptor expression. Chin Med J (Engl). 2011;124(21):3537-3545. PMID: 22340174.

Kim KM, Son HE, Min HY, Jang WG. Vitexin enhances osteoblast differentiation through phosphorylation of Smad and expression of Runx2 at in vitro and ex vivo. Mol Biol Rep. 2020;47(11):8809-8817. DOI: 10.1007/s11033-020-05929-y.

Suou K, Taniguchi F, Tagashira Y, Kiyama T, Terakawa N, Harada T. Apigenin inhibits tumor necrosis factor α-induced cell proliferation and prostaglandin E2 synthesis by inactivating NFκB in endometriotic stromal cells. Fertil Steril. 2011;95(4):1518-1521. DOI: 10.1016/j.fertnstert.2010.09.046.

Goudarzi F, Kiani A, Moradi M, Haghshenas B, Hashemnia M, Karami A, et al. Intraprostatic injection of exosomes isolated from adipose‐derived mesenchymal stem cells for the treatment of chronic non‐bacterial prostatitis. J Tissue Eng Regen Med. 2021;15(12):1144-1154. DOI: 10.1002/term.3251.

Chen YY, Wang WW, Yang L, Chen WW, Zhang HX. Association between lipid profiles and osteoporosis in postmenopausal women: a meta-analysis. Eur Rev Med Pharmacol Sci. 2018;22(1):1-9. DOI: 10.26355/eurrev_201801_14093.

Ginaldi L, Di Benedetto MC, De Martinis M. Osteoporosis, inflammation and ageing. Immun Ageing. 2005;2(1):14. DOI: 10.1186/1742-4933-2-14.

Tomomatsu N, Aoki K, Alles N, Soysa NS, Hussain A, Nakachi H, et al. LPS‐induced inhibition of osteogenesis is TNF‐α dependent in a murine tooth extraction model. J Bone Miner Res. 2009;24(10):1770-1781. DOI: 10.1359/jbmr.090410

Al-Daghri NM, Aziz I, Yakout S, Aljohani NJ, Al-Saleh Y, Amer OE, et al. Inflammation as a contributing factor among postmenopausal Saudi women with osteoporosis. Medicine (Baltimore). 2017;96(4):e5780. DOI: 10.1097/MD.0000000000005780.

Li C, Li B, Dong Z, Gao L, He X, Liao L, et al. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway. Stem Cell Res Ther. 2014;5(3):67. DOI: 10.1186/scrt456.

Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18(5):1141-60. DOI: 10.1038/s41423-021-00670-3.

Mostafa RE, Morsi AH, Asaad GF. Anti-inflammatory effects of saxagliptin and vildagliptin against doxorubicin-induced nephrotoxicity in rats: attenuation of NLRP3 inflammasome up-regulation and tubulo-interstitial injury. Res Pharm Sci. 2021;16(5):547-558. DOI: 10.4103/1735-5362.323920.

Coffman JA. Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol Int. 2003;27(4):315-324. DOI: 10.1016/S1065-6995(03)00018-0.

Gordeladze JO, Noël D, Bony C, Apparailly F, Louis-Plence P, Jorgensen C. Transient down-regulation of cbfa1/Runx2 by RNA interference in murine C3H10T1/2 mesenchymal stromal cells delays in vitro and in vivo osteogenesis, but does not overtly affect chondrogenesis. Exp Cell Res. 2008;314(7):1495-1506. DOI: 10.1016/j.yexcr.2007.12.023.

Movahedi Najafabadi B, Abnosi MH. Boron induces early matrix mineralization via calcium deposition and elevation of alkaline phosphatase activity in differentiated rat bone marrow mesenchymal stem cells. Cell J. 2016;18(1):62-73. DOI: 10.22074/cellj.2016.3988.

Sadraei H, Asghari G, Khanabadi M, Minaiyan M. Anti-inflammatory effect of apigenin and hydroalcoholic extract of Dracocephalum kotschyi on acetic acid-induced colitis in rats. Res Pharm Sci. 2017;12(4):322-329. DOI: 10.4103/1735-5362.212050.

Kowalski J, Samojedny A, Paul M, Pietsz G, Wilczok T. Effect of apigenin, kaempferol and resveratrol on the expression of interleukin-1beta and tumor necrosis factor-alpha genes in J774.2 macrophages. Pharmacol Rep. 2005;57(3):390-394. PMID: 15985724.

Rezai-Zadeh K, Ehrhart J, Bai Y, Sanberg PR, Bickford P, Tan J, et al. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation. 2008;5(1):41. DOI: 10.1186/1742-2094-5-41.

Eskandari H, Ghanadian M, Noleto-Dias C, Lomax C, Tawfike A, Christiansen G, et al. Inhibitors of α-synuclein fibrillation and oligomer toxicity in Rosa damascena: the all-pervading powers of flavonoids and phenolic glycosides. ACS Chem Neurosci. 2020;11(19):3161-3173. DOI: 10.1021/acschemneuro.0c00528.

Lim H, Min DS, Park H, Kim HP. Flavonoids interfere with NLRP3 inflammasome activation. Toxicol Appl Pharmacol. 2018;355:93-102. DOI: 10.1016/j.taap.2018.06.022.

Qin Y, Zhao D, Zhou HG, Wang XH, Zhong WL, Chen S, et al. Apigenin inhibits NF-κB and snail signaling, EMT and metastasis in human hepatocellular carcinoma. Oncotarget. 2016;7(27):41421-41431. DOI: 10.18632/oncotarget.9404.

Ai XY, Qin Y, Liu HJ, Cui ZH, Li M, Yang JH, et al. Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling. Oncotarget. 2017;8(59):100216-100226. DOI: 10.18632/oncotarget.22145.

Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res. 2010; 27(6):962-978. DOI: 10.1007/s11095-010-0089-7.

Li R, Wang X, Qin T, Qu R, Ma S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res. 2016;296:318-325. DOI: 10.1016/j.bbr.2015.09.031.

Park JA, Ha SK, Kang TH, Oh MS, Cho MH, Lee SY, et al. Protective effect of apigenin on ovariectomy-induced bone loss in rats. Life Sci. 2008;82(25-26):1217-1223. DOI: 10.1016/j.lfs.2008.03.021.

Goto T, Hagiwara K, Shirai N, Yoshida K, Hagiwara H. Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology. 2015;67(2):357-365. DOI: 10.1007/s10616-014-9694-3.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.