In vivo anti-inflammatory activities of Plantago major extract and fractions and analysis of their phytochemical components using a high-resolution mass spectrometry

Asih Triastuti , Dimas Adhi Pradana, Iwang Davi Setiawan, Nanang Fakhrudin, Setiawan Khoirul Himmi, Sitarina Widyarini, Abdul Rohman

Abstract


Background and purpose: Plantago major has been applied as a herbal remedy for centuries. However, studies on anti-inflammatory activities and their chemical ingredients are limited. The objective of this study was to investigate the anti-inflammatory properties of P. major in three animal models and its phytochemical contents.

Experimental approach: Dichloromethane extract (DCM) of P. major was fractionated with n-hexane to yield the soluble (SHF) and insoluble (IHF) fractions. The anti-inflammatory activities of DCM, SHF, and IHF were evaluated using rat’s paw edema induced by carrageenan, thioglycolate-induced leukocyte emigration in the mice, and rheumatoid arthritis (RA) induced by complete Freund’s adjuvants in rats. The chemical constituents were analyzed using a high-resolution mass spectrometer (HRMS).

Findings / Results: The DCM, SHF, and IHF inhibited paw edema in the rats and reduced the leukocyte migration in the mice. At dose 560 mg/kg, the percentage of inhibitory was 47.33%, 55.51%, and 46.61% for the DCM, IHF, and SHF, respectively. In the RA animal model, IHF at 280 and 560 mg/kg reduced osteoclast formation and COX-2 expression compared to diclofenac. Some compounds namely oleic acid, linoleic acid, palmitic acid, and oleamide identified in the DCM, IHF, and SHF may be responsible for these activities.

Conclusion and implications: This study showed that P. major has several in-vivo anti-inflammatory activities.

 

 


Keywords


Anti-inflammatory; Anti-rheumatoid arthritis; Chemical compounds; HRMS; Plantago major.

Full Text:

PDF

References


Zubair M, Widén C, Renvert S, Rumpunen K. Water and ethanol extracts of Plantago major leaves show anti-inflammatory activity on oral epithelial cells. J Tradit Complement Med. 2019;9(3):169-171. DOI: 10.1016/j.jtcme.2017.09.002

Adom MB, Taher M, Mutalabisin MF, Amri MS, Abdul Kudos MB, Wan Sulaiman M, et al. Chemical constituents and medical benefits of Plantago major. Biomed Pharmacother. 2017;96:348-360. DOI: 10.1016/j.biopha.2017.09.152.

Jamilah J, Sharifa A, Sharifah N. GC-MS analysis of various extracts from leaf of Plantago major used as traditional medicine. World Appl Sci J. 2012;17:67-70.

Ringbom T, Huss U, Stenholm A, Flock S, Skattebøl L, Perera P, et al. COX-2 inhibitory effects of naturally occurring and modified fatty acids. J Nat Prod. 2001;64(6):745-749. DOI: 10.1021/np000620d.

Handjieva N, Spassov S, Bodurova G, Saadi H, Popov S, Pureb O, et al. Majoroside, an iridoid glucoside from Plantago major. Phytochemistry. 1991;30(4):1317-1318. DOI: 10.1016/S0031-9422(00)95224-5.

Amini M, Kherad M, Mehrabani D, Azarpira N, Panjehshahin MR, Tanideh N. Effect of Plantago major on burn wound healing in rat. J Appli Anim Res. 2010;37(1):53-56. DOI: 10.1080/09712119.2010.9707093.

Caro DC, Rivera DE, Ocampo Y, Franco LA, Salas RD. Pharmacological evaluation of Mentha spicata L. and Plantago major L., medicinal plants used to treat anxiety and insomnia in colombian caribbean coast. Evid Based Complement Alternat Med. 2018;2018:5921514.DOI: 10.1155/2018/5921514.

Parhizgar S, Hosseinian S, Hadjzadeh MAR, Soukhtanloo M, Ebrahimzadeh A, Mohebbati R, et al. Renoprotective effect of Plantago major against nephrotoxicity and oxidative stress induced by cisplatin. Iran J Kidney Dis. 2016;10(4):182-188. PMID: 27514764.

Hussan F, Osman Basah RH, Mohd Yusof MR, Kamaruddin NA, Othman F. Plantago major treatment enhanced innate antioxidant activity in experimental acetaminophen toxicity. Asian Pac J Trop Biomed. 2015;5(9):728-732.DOI: 10.1016/j.apjtb.2015.06.013.

Kolak U, Boǧa M, Uruşak EA, Ulubelen A. Constituents of Plantago major subsp. intermedia with antioxidant and anticholinesterase capacities. Turkish J Chem. 2011;35(4):637-645. DOI: 10.3906/kim-1102-990

Ringbom T, Segura L, Noreen Y, Perera P, Bohlin L. Ursolic acid from Plantago major, a selective inhibitor of cyclooxygenase-2 catalyzed prostaglandin biosynthesis. J Nat Prod. 1998;61(10):1212-1215. DOI: 10.1021/np980088i.

Triastuti A, Pradana DA, Saputra DE, Lianika N, Wicaksono HR, DewiAnisari T, et al. Anti-rheumatoid activity of a hexane-insoluble fraction from Plantago major in female Wistar rats induced by complete Freund’s adjuvant. J Tradit Complement Med. 2022;12(3):219-224. DOI: 10.1016/j.jtcme.2021.07.006.

Avantor. Safety data sheet plantago major tincture. Rutland; 2015. Available from: https://us.vwr.com/assetsvc/asset/en_US/id/16490607/contents.

Shui S, Shen S, Huang R, Xiao B, Yang J. Metabonomic analysis of biochemical changes in the plasma and urine of carrageenan-induced rats after treatment with Yi-Guan-Jian decoction. J Chromatogr B. 2016;1033-1034:80-90. DOI: 10.1016/j.jchromb.2016.08.003.

Fakhrudin N, Franyoto YD, Astuti ED, Nurrochmad A, Wahyuono S. The effect of ursolic acid from Plantago lanceolata leaves on leukocytes migration and chemokines level. Indonesian J Pharm. 2019;30(4):252-259.

Ruckmani A, Meti V, Vijayashree R, Arunkumar R, Rao Konda V, Prabhu L, et al. Anti-rheumatoid activity of ethanolic extract of Sesamum indicum seed extract in Freund’s complete adjuvant induced arthritis in Wistar albino rats. J Tradit Complement Med. 2018;8(3):377-386. DOI: 10.1016/j.jtcme.2017.06.003.

Smit HF, Kroes BH, Van Den Berg AJJ, van der Wal D, van den Worm E, J Beukelman C, et al. Immunomodulatory and anti-inflammatory activity of Picrorhiza scrophulariiflora. J Ethnopharmacol. 2000;73(1-2):101-109. DOI: 10.1016/S0378-8741(00)00268-3.

de-Almeida SCX, da-Silva ÂCF, Sousa NRT, Amorim IHF, Leite BG, Neves KRT, et al. Antinociceptive and anti-inflammatory activities of a triterpene-rich fraction from Himatanthus drasticus. Braz J Med Biol Res. 2019;52(5):1-12. DOI: 10.1590/1414-431X20197798.

Triastuti A, Haddad M, Barakat F, Mejia K, Rabouille G, Fabre N, et al. Dynamics of chemical diversity during co-cultures: an integrative time-scale metabolomics study of fungal endophytes Cophinforma mamane and Fusarium solani. Chem Biodivers. 2021;18(2). DOI: 10.1002/cbdv.202000672.

Hopkin SJ, Lewis JW, Krautter F, Chimen M, McGettrick HM. Triggering the resolution of immune mediated inflammatory diseases: can targeting leukocyte migration be the answer? Front Pharmacol. 2019;10:1-9. DOI: 10.3389/fphar.2019.00184.

Turel I, Ozbek H, Erten R, Oner AC, Cengiz N, Yilmaz O. Hepatoprotective and anti-inflammatory activities of Plantago major L. Indian J Pharmacol. 2009;41(3):120-124. DOI: 10.4103/0253-7613.55211.

Jones DP, True HD, Patel J. Leukocyte trafficking in cardiovascular disease: insights from experimental models. Mediators Inflamm. 2017;2017:9746169.DOI: 10.1155/2017/9746169.

Hermida MDR, Malta R, de Santos MDPC, dos-Santos WLC. Selecting the right gate to identify relevant cells for your assay: a study of thioglycollate-elicited peritoneal exudate cells in mice. BMC Res Notes. 2017;10(1):1-7. DOI: 10.1186/s13104-017-3019-5.

Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(12 Pt 2):S140-S146. DOI: 10.1111/j.1753-4887.2007.tb00352.x.

Kim EY, Sudini K, Singh AK, Haque M, Leaman D, Khuder S, et al. Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1. FASEB Journal. 2018;32(11):6174-6185. DOI: 10.1096/fj.201800425R.

Chen C. Lipids: COX-2’s new role in inflammation. Nat Chem Biol. 2010;6(6):401-402. DOI: 10.1038/nchembio.375.

Joa H, Vogl S, Atanasov AG, Zehl M, Nakel T, Fakhrudin N, et al. Identification of ostruthin from Peucedanum ostruthium rhizomes as an inhibitor of vascular smooth muscle cell proliferation. J Nat Prod. 2011;74(6):1513-1516. DOI: 10.1021/np200072a.

Ahmad J, Wizarat K, Shamsuddin KM, Zaman A, Connolly JD. Jangomolide, a novel limonoid from Flacourtia jangomas. Phytochemistry. 1984;23(6):1269-1270.DOI: 10.1016/S0031-9422(00)80439-2.

Schinkovitz A, Gibbons S, Stavri M, Cocksedge MJ, Bucar F. Ostruthin: an antimycobacterial coumarin from the roots of Peucedanum ostruthium. Planta Med. 2003;69(4):369-371. DOI: 10.1055/s-2003-38876.

Guil-Guerrero JL. Nutritional composition of Plantago species (P. major L., P. lanceolata L., and P. media L.). Ecol Food Nutr. 2001;40(5):481-495. DOI: 10.1080/03670244.2001.9991663.

Souza CO, Teixeira AAS, Lima EA, Batatinha HAP, Gomes LM, Carvalho-Silva M; et al. Palmitoleic acid (N-7) attenuates the immunometabolic disturbances caused by a high-fat diet independently of ppar α. Mediators Inflamm. 2014;2014:582197. DOI: 10.1155/2014/582197.

Genolet R, Wahli W, Michalik L. PPARs as drug targets to modulate inflammatory responses? Curr Drug Target Inflamm Allergy. 2004;3(4):361-375. DOI: 10.2174/1568010042634578.

Magdalon J, Vinolo MAR, Rodrigues HG, Paschoal VA, Torres RP, Mancini-Filho J, et al. Oral administration of oleic or linoleic acids modulates the production of inflammatory mediators by rat macrophages. Lipids. 2012;47(8):803-812. DOI: 10.1007/s11745-012-3687-9.

Medeiros-de-Moraes IM, Gonçalves-de-Albuquerque CF, Kurz ARM, de Jesus Oliveira FM, de Abreu VHP, Torres RC, et al. Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Oxid Med Cell Longev. 2018;2018:6053492. DOI: 10.1155/2018/6053492.

Hidalgo MA, Carretta MD, Burgos RA. Long chain fatty acids as modulators of immune cells function: contribution of FFA1 and FFA4 receptors. Front Physiol. 2021;12:668330,1-18. DOI: 10.3389/fphys.2021.668330.

Kim H, Youn K, Yun EY, Hwang JS, Jeong WS, Ho CT, et al. Oleic acid ameliorates Aβ-induced inflammation by downregulation of COX-2 and iNOS via NFκB signaling pathway. J Funct Foods. 2015;14:1-11. DOI: 10.1016/j.jff.2015.01.027.

Dewick PM. Medicinal Natural Products : A Biosynthetic Approach. 3rd ed. Chichester: John WIley & Sons, Ltd; 2009. pp. 53 .DOI: 10.1017/CBO9781107415324.004.

Oh YT, Lee JY, Lee J, Lee JH, Kim JE, Ha J, et al. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-κB activation in BV2 murine microglial cells. Neurosci Lett. 2010;474(3):148-153. DOI: 10.1016/j.neulet.2010.03.026.

Roa-Coria JE, Navarrete-Vázquez G, Fowler CJ, Flores-Murrieta FJ, Déciga-Campos M, Granados-Soto V. N-(4-Methoxy-2-nitrophenyl) hexadecanamide, a palmitoylethanolamide analogue, reduces formalin-induced nociception. Life Sci. 2012;91(25-26):1288-1294. DOI: 10.1016/j.lfs.2012.09.024.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.