The effect of valproic acid on intrinsic, extrinsic, and JAK/STAT pathways in neuroblastoma and glioblastoma cell lines

Masumeh Sanaei , Fraidoon Kavoosi

Abstract


Background and purpose: Epigenetics has been defined as the study of mitotically heritable alterations in gene expression that are not caused by changes in DNA sequence. Epigenetic-mediated silencing of a gene includes genomic imprinting, histone deacetylation, DNA methylation, and RNA-associated silencing. Cell growth and cell proliferation are inhibited by some histone deacetylase and histone inhibitors. This study was designed to investigate the effect of valproic acid (VPA) on extrinsic, intrinsic, and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways in neuroblastoma and glioblastoma cell lines.

Experimental approach: The neuroblastoma and glioblastoma cells were cultured and treated with VPA. MTT assay was done to determine cell viability. Besides, a flow cytometry assay was performed to determine apoptotic cells and finally, the relative gene expression level was evaluated by qRT-PCR.

Findings / Results: VPA changed the expression level of the genes of the extrinsic, intrinsic, and JAK/STAT pathways which induced cell apoptosis and inhibited cell growth in the neuroblastoma and glioblastoma cells. In the neuroblastoma cell lines, VPA upregulated the expression level of FAS, FAS-L, DR4, DR5, and TRAIL genes significantly. Additionally, it significantly up-regulated the expression level of Bak, Bax, and Bim genes and down-regulated the expression level of Bcl-xL, Bcl-2, and Mcl-1 genes in both neuroblastoma and glioblastoma cell lines.

Conclusion and implications: VPA induced cell apoptosis through extrinsic, intrinsic, and JAK/STAT pathways.


Keywords


Apoptosis; Gene Expression; Neoplasms; Valproic acid.

Full Text:

PDF

References


Sanaei M, Kavoosi F. Effect of vorinostat on INK4 family and HDACs 1, 2, and 3 in pancreatic cancer and hepatocellular carcinoma. Res Pharm Sci. 2021;16(3):260-268. DOI: 10.4103/1735-5362.314824.

Liu X, Luo M, Wu K. Epigenetic interplay of histone modifications and DNA methylation mediated by HDA6. Plant Signal Behav. 2012;7(6):633-635.DOI: 10.4161/psb.19994.

Grønbaek K, Hother C, Jones PA. Epigenetic changes in cancer. Apmis. 2007;115(10):1039-1059.DOI: 10.1111/j.1600-0463.2007.apm_636.xml.x.

Naghitorabi M, Mohammadi Asl J, Mir Mohammad Sadeghi H, Rabbani M, Jafarian-Dehkordi A, Javanmard HS. Quantitative evaluation of DNMT3B promoter methylation in breast cancer patients using differential high resolution melting analysis. Res Pharm Sci. 2013;8(3):167-175.PMID: 24019826.

Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277(1):8-21.DOI: 10.1016/J.CANLET.2008.08.016.

Ganesan A, Nolan L, Crabb SJ, Packham G. Epigenetic therapy: histone acetylation, DNA methylation and anti-cancer drug discovery. Curr Cancer Drug Targets. 2009;9(8):963-981.DOI: 10.2174/156800909790192428.

Laird PW. Cancer epigenetics. Hum Mol Genet. 2005;14(Suppl1):R65-R76.DOI:10.1093/hmg/ddi113.

Walkinshaw DR, Yang XJ. Histone deacetylase inhibitors as novel anticancer therapeutics. Curr Oncol. 2008;15(5):237-243.PMID: 19008999.

Kavoosi F, Sanaei M. Comparative analysis of the effects of valproic acid and tamoxifen on proliferation, and apoptosis of human hepatocellular carcinoma WCH 17 celllin. Iran J Ped Hematol Oncol. 2018;8(1):12-20.

Sanaei M, Kavoosi F. Histone deacetylases and histone deacetylase inhibitors: molecular mechanisms of action in various cancers. Adv Biomed Res. 2019;8:63-72.DOI: 10.4103/abr.abr_142_19.

Xu SW, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26(37):5541-5552.DOI: 10.1038/sj.onc.1210620.

Wang H, Cai S, Ernstberger A, Bailey BJ, Wang MZ, Cai W, et al. Temozolomide-mediated DNA methylation in human myeloid precursor cells: differential involvement of intrinsic and extrinsic apoptotic pathways. Clin Cancer Res. 2013;19(10):2699-2709.DOI: 10.1158/1078-0432.CCR-12-2671.

Xiong H, Du W, Zhang YJ, Hong J, Su W-Y, Tang J-T, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter‐associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol carcinog. 2012;51(2):174-184.DOI: 10.1002/mc.20777.

Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L, et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development. 2005;132(15):3345-3356.DOI: 10.1242/dev.01912.

Sanaei M, Kavoosi F, Behjoo H. Effect of valproic acid and zebularine on SOCS-1 and SOCS-3 gene expression in colon carcinoma SW48 cell line. Exp Oncol. 2020;42(3):183-187.DOI: 10.32471/exp-oncology.2312-8852.vol-42-no-3.15113.

Kortenhorst MSQ, Isharwal S, Van Diest PJ, Chowdhury WH, Marlow C, Carducci MA, et al. Valproic acid causes dose-and time-dependent changes in nuclear structure in prostate cancer cells in vitro and in vivo. Mol Cancer Ther. 2009;8(4):802-808.DOI: 10.1158/1535-7163.MCT-08-1076.

Nakamoto N, Higuchi H, Kanamori H, Kurita S, Tada S, Takaishi H, et al. Cyclooxygenase-2 inhibitor and interferon-β synergistically induce apoptosis in human hepatoma cells in vitro and in vivo. Int J Oncol. 2006;29(3): 625-635.PMID: 16865278.

Tao J, Qiu B, Zhang D, Wang Y. Expression levels of Fas/Fas-L mRNA in human brain glioma stem cells. Mol Med Rep. 2012; 5(5):1202-1206.DOI: 10.3892/mmr.2012.791.

Inoue T, Anai S, Onishi S, Miyake M, Tanaka N, Hirayama A, et al. Inhibition of COX-2 expression by topical diclofenac enhanced radiation sensitivity via enhancement of TRAIL in human prostate adenocarcinoma xenograft model. BMC urol. 2013; 13:1-9.DOI: 10.1186/1471-2490-13-1.

Cao XX, Mohuiddin I, Chada S, Mhashilkar AM, Ozvaran MK, McConkey DJ, et al. Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells, and is abrogated by over-expression of BCL-XL. Mol Med. 2002; 8(12):869-876.DOI: 10.1007/BF03402093.

Ierano C, Chakraborty A, Nicolae A, Bahr J, Zhan Z, Pittaluga S, et al. Loss of the proteins Bak and Bax prevents apoptosis mediated by histone deacetylase inhibitors. Cell Cycle. 2013;12(17):2829-2838.DOI: 10.4161/cc.25914.

Zhang X-Q, Dong J-J, Cai T, Shen X, Zhou X-J, Liao L. High glucose induces apoptosis via upregulation of Bim expression in proximal tubule epithelial cells. Oncotarget 2017;8(15): 24119-24129.DOI: 10.18632/oncotarget.15491.

Xu Y, Liu L, Qiu X, Liu Z, Li H, Li Z, et al. CCL21/CCR7 prevents apoptosis via the ERK pathway in human non-small cell lung cancer cells. PLoS One. 2012;7(3): e33262-1-9.DOI: 10.1371/journal.pone.0033262.

Zhang Y-L, Pang L-Q, Wu Y, Wang X-Y, Wang C-Q, Fan Y. Significance of Bcl-xL in human colon carcinoma. World J gastroenterol:. 2008;14(19):3069-3073.DOI: 10.3748/wjg.14.3069.

Wang B, Ni Z, Dai X, Qin L, Li X, Xu L, et al. The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells. Mol Cancer. 2014;13:98-109.DOI: 10.1186/1476-4598-13-98.

Masood KI, Rottenberg ME, Salahuddin N, Irfan M, Rao N, Carow B, et al. Expression of M. tuberculosis-induced suppressor of cytokine signaling (SOCS) 1, SOCS3, FoxP3 and secretion of IL-6 associates with differing clinical severity of tuberculosis. BMC Infect Dis. 2013; 13:13-21.DOI: 10.1186/1471-2334-13-13.

Leon AJ, Gomez E, Garrote JA, Bernardo D, Barrera A, Marcos JL, et al. High levels of proinflammatory cytokines, but not markers of tissue injury, in unaffected intestinal areas from patients with IBD. Mediators inflam. 2009;2009:580450-1-10.DOI: 10.1155/2009/580450.

Chen B, Lai J, Dai D, Chen R, Li X, Liao N. JAK1 as a prognostic marker and its correlation with immune infiltrates in breast cancer. Aging (Albany NY). 2019;11(23):11124-11135.DOI: 10.18632/aging.102514.

Xiong H, Chen Z-F, Liang Q-C, Du W, Chen H-M, Su W-Y, et al. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling. J Cell Mol Med. 2009;13(98):3668-3679.DOI: 10.1111/j.1582-4934.2009.00661.x.

Zhao S, Guo J, Zhao Y, Fei C, Zheng Q, Li X, et al. Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling. Am J Transl Res. 2016;8(7): 3169-3178.PMID: 27508038.

Sanaei M, Kavoosi F, Safarzadeh M. Effect of valproic acid on SOCS-1, SOCS-2, SOCS-3, SOCS-5, SOCS6, and SOCS-7 genes expression and cell growth inhibition in colon carcinoma. Gastroenterol Hepatol Bed Bench. 2022;15(1): 39-44)..

Arvidsson Y, Johanson V, Pfragner R, Wängberg B, Nilsson O. Cytotoxic effects of valproic acid on neuroendocrine tumour cells. Neuroendocrinology. 2016;103(5):578-591.DOI: 10.1159/000441849.

Santos J, Hubert T, Milthorpe BK. Valproic acid promotes early neural differentiation in adult mesenchymal stem cells through protein signalling pathways. Cells. 2020;9(3):619-644.DOI: 10.3390/cells9030619.

Shankar S, Singh TR, Fandy TE, Luetrakul T, Ross DD, Srivastava RK. Interactive effects of histone deacetylase inhibitors and TRAIL on apoptosis in human leukemia cells: involvement of both death receptor and mitochondrial pathways. Int J Mol Med. 2005;16(6):1125-1138.PMID: 16273296.

Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26(37):5541-5552.DOI: 10.1038/sj.onc.1210620.

Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T. Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene. 2004;23(37):6261-6271.DOI: 10.1038/sj.onc.1207830.

Lagneaux L, Gillet N, Stamatopoulos B, Delforge A, Dejeneffe M, Massy M, et al. Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response. Exp Hematol. 2007;35(10):1527-1537.DOI: 10.1016/j.exphem.2007.06.014.

Catalano MG, Fortunati N, Pugliese M, Costantino L, Poli R, Bosco O, et al. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab. 2005;90(3):1383-1389.DOI: 10.1210/jc.2004-1355.

Mühlethaler-Mottet A, Meier R, Flahaut M, Bourloud KB, Nardou K, Joseph J-M, et al. Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells. Mol Cancer. 2008;7:55-66.DOI: 10.1186/1476-4598-7-55.

Choudhury SR, Karmakar S, Banik NL, Ray SK. Valproic acid induced differentiation and potentiated efficacy of taxol and nanotaxol for controlling growth of human glioblastoma LN18 and T98G cells. Neurochem Res. 2011;36(12):2292-2305.DOI: 10.1007/s11064-011-0554-7.

Zhou Y, Xu Y, Wang H, Niu J, Hou H, Jiang Y. Histone deacetylase inhibitor, valproic acid, radiosensitizes the C6 glioma cell line in vitro. Oncol Lett. 2014;7(1): 203-208.DOI: 10.3892/ol.2013.1666.

Khathayer F, Taylor MA, Ray SK. Synergism of 4HPR and SAHA increases anti-tumor actions in glioblastoma cells. Apoptosis. 2020;25(3-4):217-232.DOI: 10.1007/s10495-020-01590-9.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.