Weak complexation of 5-fluorouracil with β-cyclodextrin, carbonate, and dianhydride crosslinked β-cyclodextrin: in vitro and in silico studies

Hadeia Mashaqbeh , Rana Obaidat , Nizar A. Al-Shar’i, Tamam El-Elimat, Soraya Alnabulsi

Abstract


Background and purpose: Several pharmaceutical formulations were investigated to improve the solubility of 5-fluorouracil to enhance bioavailability and therapeutic efficacy. This study aimed to examine the potential use of cyclodextrin-based nanosponges for the incorporation of 5-fluorouracil and to investigate the use of different crosslinking agents on the properties of the resulting drug carrier. 5-Fluorouracil complexation with β-cyclodextrin was also studied to explain the unexpected results of weak 5-fluorouracil incorporation in nanosponge.

Experimental approach: Nanosponges were synthesized by crosslinking β-cyclodextrin with two different crosslinkers; diphenyl carbonate and ethylenediaminetetraacetic dianhydride. The incorporation of 5-fluorouracil into β-cyclodextrin and the prepared nanosponges were assessed by NMR, FTIR, PXRD, DSC, and TGA. In addition, an in vitro release study was carried out to evaluate the potential use of β-cyclodextrin-based nanosponges as pharmaceutical formulations for 5-fluorouracil.

Findings / Results: Physicochemical characterization of the dried formulations indicated the complexation of 5-fluorouracil with the β-cyclodextrin polymer. Despite that, no clear manifestation of 5-fluorouracil encapsulation in the prepared β-cyclodextrin-based nanosponge was detected. Furthermore, no significant differences were observed in the release profiles of 5-fluorouracil, β-cyclodextrin complex, and β-cyclodextrin-based nanosponge, suggesting weak complexation and instability in aqueous solutions. EDTA-crosslinked β-cyclodextrin-based nanosponge showed a slight improvement in 5-fluorouracil solubility with a faster initial rate of 5-fluorouracil release.

Conclusion and implications: This study suggested weak complexation between 5-fluorouracil and the β-cyclodextrin polymer or nanosponges. Crosslinking of β-cyclodextrin with EDTA dianhydride crosslinker showed an enhancement in 5-fluorouracil saturation solubility combined with a faster initial rate of drug release.


Keywords


β-Cyclodextrin-based nanosponges; Complexation; Crosslinking agent; 5-Fluorouracil.

Full Text:

PDF

References


Information NCfB. 5-Fluorouracil (May 9, 2021). Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5-Fluorouracil.

Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330-338.DOI: 10.1038/nrc1074.

Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol and Ther. 2020;206:107447,1-64.DOI: 10.1016/j.pharmthera.2019.107447.

Chinembiri TN, Gerber M, Du Plessis L, Du Preez J, Du Plessis J. Topical delivery of 5-fluorouracil from Pheroid™ formulations and the in vitro efficacy against human melanoma. AAPS PharmSciTech. 2015;16(6):1390-1399.DOI: 10.1208/s12249-015-0328-7.

Krabicová I, Appleton SL, Tannous M, Hoti G, Caldera F, Pedrazzo AR, et al. History of cyclodextrin nanosponges. Polymers. 2020;12(5):1122,1-23.DOI: 10.3390/polym12051122.

Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm. 2010;74(2):193-201.DOI: 10.1016/j.ejpb.2009.11.003.

Singireddy A, Subramanian S. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Part Sci Technol. 2016;34(3):341-346.DOI: 10.1080/02726351.2015.1081658.

Trotta F. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine. In: Bilensoy E, editor. New Jersey: John Wiley & Sons, Inc; 2011. pp. 323-342.

DOI: 10.1002/9780470926819.

Hoti G, Caldera F, Cecone C, Pedrazzo AR, Anceschi A, Appleton SL, et al. Effect of the cross-linking density on the swelling and rheological behavior of ester-bridged β-cyclodextrin nanosponges. Materials (Basel). 2021;14(3):478,1-20.DOI: 10.3390/ma14030478.

Asela I, Donoso-González O, Yutronic N, Sierpe R. β-Cyclodextrin-based nanosponges functionalized with drugs and gold nanoparticles. Pharmaceutics. 2021;13(4):513,1-25.DOI: 10.3390/pharmaceutics13040513.

Gharakhloo M, Sadjadi S, Rezaeetabar M, Askari F, Rahimi A. Cyclodextrin‐based nanosponges for improving solubility and sustainable release of curcumin. ChemistrySelect. 2020;5(5):1734-1738.DOI: 10.1002/slct.201904007.

BIOVIA DS, Dassault Systèmes, Discovery Studio. 2017, Accelrys Inc.: San Diego, CA, USA.

Banerjee A, Mikhailova E, Cheley S, Gu L-Q, Montoya M, Nagaoka Y, et al. Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores. P N A S. 2010; 107:18,8165-8170.DOI: 10.1073/pnas.0914229107.

Wu G, Robertson DH, Brooks CL, Vieth M. Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem. 2003;24(13):1549-1562.DOI: 10.1002/jcc.10306.

Obaidat R, Al-Shar’i N, Tashtoush B, Athamneh T. Enhancement of levodopa stability when complexed with β-cyclodextrin in transdermal patches. Pharm Dev Technol. 2018;23(10):986-997.DOI: 10.1080/10837450.2016.1245319.

Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001;105(43):9954-9960.DOI:10.1021/jp003020w.

Crowley M, Darden T, Cheatham T, Deerfield D. Adventures in improving the scaling and accuracy of a parallel molecular dynamics program. J Supercomput. 1997;11(3):255-278.DOI: 10.1023/a:1007907925007.

Fadrná E, Hladečková K, Koča J. Long-range electrostatic interactions in molecular dynamics: an endothelin-1 case study. J Biomol Struct Dyn. 2005;23(2):151-162.DOI: 10.1080/07391102.2005.10531229.

Kaszuba M, McKnight D, Connah MT, McNeil-Watson FK, Nobbmann U. Measuring sub nanometre sizes using dynamic light scattering. J Nanopart Res. 2008;10(5):823-829.DOI: 10.1007/s11051-007-9317-4.

Jubeen F, Liaqat A, Amjad F, Sultan M, Iqbal SZ, Sajid I, et al. Synthesis of 5-fluorouracil cocrystals with novel organic acids as coformers and anticancer evaluation against HCT-116 colorectal cell lines. Cryst Growth Des. 2020;20(4):2406-2414.DOI: 10.1021/acs.cgd.9b01570.

Chen J, Qin X, Zhong S, Chen S, Su W, Liu Y. Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities. Molecules. 2018;23(5):1179,1-13.DOI: 10.3390/molecules23051179.

Liu X, Li W, Xuan G. Preparation and Characterization of β-Cyclodextrin Nanosponges and Study on Enhancing the Solubility of Insoluble Nicosulfuron. Vol 774(1). Bristol: IOP Publishing; 2020. pp. 1-12.DOI: 10.1088/1757-899X/774/1/012108.

Enkelmann DD, Handelmann J, Schauerte C, Merz K. Co-crystallization and polymorphic behaviour of 5-fluorouracil. CrystEngComm. 2019;21(13):2130-2134.

DOI: 10.1039/c8ce01692e.

Grandelli HE, Stickle B, Whittington A, Kiran E. Inclusion complex formation of β-cyclodextrin and naproxen: a study on exothermic complex formation by differential scanning calorimetry. J Incl Phenom Macrocycl Chem. 2013;77(1-4):269-277.

DOI: 10.1007/s10847-012-0241-6.

Geng Q, Li T, Wang X, Chu W, Cai M, Xie J, et al. The mechanism of bensulfuron-methyl complexation with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin and effect on soil adsorption and bio-activity. Sci Rep. 2019;9(1):1882,1-11.DOI: 10.1038/s41598-018-38234-7.

Paczkowska M, Szymanowska-Powałowska D, Mizera M, Siąkowska D, Błaszczak W, Piotrowska-Kempisty H, et al. Cyclodextrins as multifunctional excipients: influence of inclusion into β-cyclodextrin on physicochemical and biological properties of tebipenem pivoxil. PLoS One. 2019;14(1):e0210694,1-22.DOI: 10.1371/journal.pone.0210694.

Yang H, Parniak MA, Isaacs CE, Hillier SL, Rohan LC. Characterization of cyclodextrin inclusion complexes of the anti-HIV non-nucleoside reverse transcriptase inhibitor UC781. The AAPS J. 2008;10(4):606-613.DOI: 10.1208/s12248-008-9070-3.

Kardooni R, Kiasat AR, Sabzi NE. Hyper-cross-linked β-cyclodextrin nanosponge: a three-dimensional, porous and biodegradable catalyst in the one-pot synthesis of kojic acid-based heterocyclic compounds. Res Chem Intermed. 2020;46(3):1857-1868.DOI: 10.1007/s11164-019-04067-w.

Melnikova DL, Badrieva ZF, Kostin MA, Maller C, Stas M, Buczek A, et al. On complex formation between 5-fluorouracil and β-cyclodextrin in solution and in the solid state: IR markers and detection of short-lived complexes by diffusion NMR. Molecules. 2020;25(23):5706,1-18.

Mioduszewska K, Dołżonek J, Wyrzykowski D, Kubik Ł, Wiczling P, Sikorska C, et al. Overview of experimental and computational methods for the determination of the pKa values of 5-fluorouracil, cyclophosphamide, ifosfamide, imatinib and methotrexate. Trends Analyt Chem. 2017;97:283-296.DOI: 10.1016/j.trac.2017.09.009.

Di Donato C, Lavorgna M, Fattorusso R, Isernia C, Isidori M, Malgieri G, et al. Alpha-and beta-cyclodextrin inclusion complexes with 5-fluorouracil: characterization and cytotoxic activity evaluation. Molecules. 2016;21(12):1644,1-14.DOI: 10.3390/molecules21121644.

Jasim IK, Abd Alhammid SN, Abdulrasool AA. Synthesis and evaluation of B-cyclodextrin based nanosponges of 5-Fluorouracil by using ultrasound assisted method. Iraqi J Pharm Sci. 2020;29(2):88-98.

Kavitha K, Rao AS, Nalini C. An investigation on enhancement of solubility of 5 fluorouracil by applying complexation technique-characterization, dissolution and molecular-modeling studies. J Appl Pharm Sci. 2013;3(3):162-166.DOI: 10.7324/JAPS.2013.30330.

Jasim IK, Abdulrasool AA, Abd-Alhammid SN. Nanosponge based gastroretentive drug delivery system of 5-fluorouracil for gastric cancer targeting. Int J Drug Deliv Technol. 2021;11(3):958-963.DOI: 10.25258/ijddt.11.3.52.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.