Further evidence to support acute and chronic anti-inflammatory effects of Nasturtium officinale

Mostafa Mostafazadeh , Heibatollah Sadeghi, Hossein Sadeghi , Vahid Zarezade, Abolghasem Hadinia, Esmaeel Panahi Kokhdan


Background and purpose: Previously, we reported the anti-inflammatory properties of Nasturtium officinale (watercress) in several models of acute inflammation. This study was designed to explore the effects of topical and systemic administrations of N. officinale in the two chronic inflammatory models and to evaluate the role of TNF-α and IL-1β in these effects.

Experimental approach: Folin-Ciocalteu and aluminum chloride methods were used to estimate the extract's total phenol and flavonoid content, respectively. Carrageenan-induced paw edema was carried out and TNF-α and IL-1β concentrations in the carrageenan-treated paw tissue were determined. Formalin injection into rat hind paws (7 days) and the application of 12-O-tetradecanoyl phorbol-13-acetate (TPA) on mouse ears (9 days) were used to simulate chronic inflammation. Furthermore, a histological assessment of the inflamed tissues was carried out.

Findings/Results: The extract's flavonoid and phenolic contents were 90.26 ± 4.81 mg rutin equivalents/g and 68 ± 8.16 gallic acid equivalents/g gallic acid, respectively. N. officinale pretreatment in all doses administered considerably decreased carrageenan-induced edema. The extract also reduced IL-1β levels in carrageenan-treated paws while did not affect TNF-α levels. Oral and topical administrations of N. officinale considerably reserved the paw and ear edema. The extract also ameliorated the tissue injuries due to formalin and TPA challenges.

Conclusion and implications: The data confirmed the topical and systemic anti-inflammatory effects                              of watercress against two chronic models of inflammation. They suggested that these properties                                                       are not related to TNF-α but could be attributed to inhibition of IL-1β and inhibition of leukocyte                       infiltration.


Anti-inflammatory; Interleukin-1 beta; Nasturtium officinale; Tetradecanoyl phorbol acetate; Tumor necrosis factor-alpha.

Full Text:



Amaral S, Mira L, Nogueira JM, da Silva AP, Helena Florêncio M. Plant extracts with anti-inflammatory properties-a new approach for characterization of their bioactive compounds and establishment of structure-antioxidant activity relationships. Bioorg Med Chem. 2009;17(5):1876-1883.

DOI: 10.1016/j.bmc.2009.01.045.

Manchali S, Murthy KNC, Patil BS. Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods. 2012;4(1):94-106.

DOI: 10.1016/j.jff.2011.08.004.

Ozen T. Investigation of antioxidant properties of Nasturtium officinale (watercress) leaf extracts. Acta Pol Pharm. 2008;66(2):187-193.

PMID: 19719054.

Bawa AS, Khanum F. Anti-inflammatory activity of Rhodiola rosea-"a second-generation adaptogen". Phytother Res. 2009;23(8):1099-1102.

DOI: 10.1002/ptr.2749.

Sadeghi H, Azarmehr N, Razmkhah F, Sadeghi H, Danaei N, Omidifar N, et al. The hydroalcoholic extract of watercress attenuates protein oxidation, oxidative stress, and liver damage after bile duct ligation in rats. J Cell Biochem. 2019;120(9):14875-14884.

DOI: 10.1002/jcb.28749.

Sedaghattalab M, Razazan M, Sadeghi H, Doustimotlagh AH, Toori MA, Abbasi Larki R, et al. Effects of Nasturtium officinale extract on antioxidant and biochemical parameters in hemodialysis patients: a randomized double-blind clinical trial. Evid Based Complement Alternat Med. 2021;2021:1632957,1-8.

DOI: 10.1155/2021/1632957.

Qeini MH, Roghani M, Alagha A. The effect of Nasturtium officinale feeding on serum glucose and lipid levels and reorganization of beta cells in diabetic rats. Razi J Med Sci. 2010;17(73):53-61.

Alkofahi A, Atta AH. Pharmacological screening of the anti-ulcerogenic effects of some Jordanian medicinal plants in rats. J Ethnopharmacol. 1999;67(3):341-345.

DOI: 10.1016/S0378-8741(98)00126-3.

Doustimotlagh AH, Kokhdan EP, Vakilpour H, Khalvati B, Barmak MJ, Sadeghi H, et al. Protective effect of Nasturtium officinale R. Br and quercetin against cyclophosphamide-induced hepatotoxicity in rats. Mol Biol Rep. 2020;47(7):5001-5012.

DOI: 10.1007/s11033-020-05556-7.

Karami M, Mostafazadeh M, Sadeghi H, Sadeghi H, Mehraban F, Kokhdan EP, et al. Nephroprotective effect of Nasturtium officinale (watercress) ethanol extract and vitamin E on vancomycin-induced nephrotoxicity in rats. Jundishapur J Nat Pharm Prod. 2018;13(1):e67178,1-8.

DOI: 10.5812/jjnpp.67178.

Giallourou NS, Rowland IR, Rothwell SD, Packham G, Commane DM, Swann JR. Metabolic targets of watercress and PEITC in MCF-7 and MCF-10A cells explain differential sensitisation responses to ionising radiation. Eur J Nutr. 2019;58(6):2377-2391.

DOI: 10.1007/s00394-018-1789-8.

Ramezani S, Javadi I, Kokhdan EP, Omidifar N, Nikbakht J, Sadeghi H, et al. Protective and therapeutic effects of ethanolic extract of Nasturtium officinale (watercress) and vitamin E against bleomycin-induced pulmonary fibrosis in rats. Res Pharm Sci. 2021;16(1):94-102.

DOI: 10.4103/1735-5362.305192.

Shahrokhi N, Hadad MK, Shabani M. Effects of aqueous extract of water cress on glucose and lipis plasma in streptozotocin induced diabetic rats. Pak J Physiol. 2009;5(2):6-10.

Akbari Bazm M, Khazaei M, Khazaei F, Naseri L. Nasturtium officinale L. hydroalcoholic extract improved oxymetholone‐induced oxidative injury in mouse testis and sperm parameters. Andrologia. 2019;51(7):e13294.

DOI: 10.1111/and.13294.

Sadeghi H, Mostafazadeh M, Sadeghi H, Naderian M, Barmak MJ, Talebianpoor MS, et al. In vivo anti-inflammatory properties of aerial parts of Nasturtium officinale. Pharm Biol. 2014;52(2):169-174.

DOI: 10.3109/13880209.2013.821138.

Shi JH, Sun SC. Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways. Front Immunol. 2018;9:1849-1861.

DOI: 10.3389/fimmu.2018.01849.

Rex J, Lutz A, Faletti LE, Albrecht U, Thomas M, Bode JG, et al. IL-1β and TNFα differentially influence NF-κB activity and FasL-induced apoptosis in primary murine hepatocytes during LPS-induced inflammation. Front Physiol. 2019;10:117-131.

DOI: 10.3389/fphys.2019.00117.

Camponogara C, Silva CR, Brusco I, Piana M, Faccin H, de Carvalho LM, et al. Nasturtium officinale R. Br. effectively reduces the skin inflammation induced by croton oil via glucocorticoid receptor-dependent and NF-κB pathways without causing toxicological effects in mice. J Ethnopharmacol. 2019;229:190-204.

DOI: 10.1016/j.jep.2018.10.011.

Nili-Ahmadabadi A, Akbari Z, Ahmadimoghaddam D, Larki-Harchegani A. The role of ghrelin and tumor necrosis factor alpha in diazinon-induced dyslipidemia: insights into energy balance regulation. Pestic Biochem Physiol. 2019;157:138-142.

DOI: 10.1016/j.pestbp.2019.03.013.

Dong Q, He D, Ni X, Zhou H, Yang H. Comparative study on phenolic compounds, triterpenoids, and antioxidant activity of Ganoderma lucidum affected by different drying methods. J Food Meas Charact. 2019;13(4):3198-3205.

DOI: 10.1007/s11694-019-00242-0.

Golkar P, Taghizadeh M, Jalali SAH. Determination of phenolic compounds, antioxidant and anticancer activity of Chrozophora tinctoria accessions collected from different regions of Iran. J Food Biochem. 2019;43(11):e13036.

DOI: 10.1111/jfbc.13036.

Sadeghi H, Parishani M, Akbartabar Touri M, Ghavamzadeh M, Jafari Barmak M, Zarezade V, et al. Pramipexole reduces inflammation in the experimental animal models of inflammation. Immunopharmacol Immunotoxicol. 2017;39(2):80-86.

DOI: 10.1080/08923973.2017.1284230.

Hajhashemi V, Sadeghi H, Minaiyan M, Movahedian A, Talebi A. Effect of fluvoxamine on carrageenan-induced paw edema in rats evaluation of the action sites. Iranian J Pharm Res. 2011;10(3):611-618.

PMID: 24250395.

Zarezade V, Sadeghi H, Kokhdan EP, Nikbakht J, Molavi M, Mostafazadeh M, et al. Effect of ethanolic extract of Stachys pilifera Benth on subacute experimental models of inflammation and some underlying mechanisms. Res Pharm Sci. 2021;16(5):516-527.

DOI: 10.4103/1735-5362.323918.

Stanley PL, Steiner S, Havens M, Tramposch KM. Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol. 1991;4(4):262-271.

DOI: 10.1159/000210960.

Sadeghi H, Hajhashemi V, Minaiyan M, Movahedian A, Talebi A. Further studies on anti-inflammatory activity of maprotiline in carrageenan-induced paw edema in rat. Int Immunopharmacol. 2013;15(3):505-510.

DOI: 10.1016/j.intimp.2013.01.018.

Shahani S, Behzadfar F, Jahani D, Ghasemi M, Shaki F. Antioxidant and anti-inflammatory effects of Nasturtium officinale involved in attenuation of gentamicin-induced nephrotoxicity. Toxicol Mech Methods. 2017;27(2):107-114.

DOI: 10.1080/15376516.2016.1258748.

Arzi A, Olapour S, Yaghooti H, Karampour NS. Effect of royal jelly on formalin induced-inflammation in rat hind paw. Jundishapur J Nat Pharm Prod. 2015;10(1):e22466.

DOI: 10.17795/jjnpp-22466.

Sreejamole KL, Radhakrishnan CK, Padikkala J. Anti-inflammatory activities of aqueous/ethanol and methanol extracts of Perna viridis Linn. in mice. Inflammopharmacology. 2011;19(6):335-341.

DOI: 10.1007/s10787-010-0075-z.

Banerjee S, Sur TK, Mandal S, Das PC, Sikdar S. Assessment of the anti-inflammatory effects of Swertia chirata in acute and chronic experimental models in male albino rats. Indian J Pharmacol. 2000;32(1):21-24.

Liu J, Huang H, Huang Z, Ma Y, Zhang L, He Y, et al. Eriocitrin in combination with resveratrol ameliorates LPS-induced inflammation in RAW264.7 cells and relieves TPA-induced mouse ear edema. J Funct Foods. 2019;56:321-332.

DOI: 10.1016/j.jff.2019.03.008.

Giner-Larza EM, Máñez S, Recio MC, Giner RM, Prieto JM, Cerdá-Nicolás M, et al. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur J Pharmacol. 2001;428(1):137-143.

DOI: 10.1016/S0014-2999(01)01290-0.

Wu JY, Chen YJ, Bai L, Liu YX, Fu XQ, Zhu PL, et al. Chrysoeriol ameliorates TPA-induced acute skin inflammation in mice and inhibits NF-κB and STAT3 pathways. Phytomedicine. 2020;68:153173.

DOI: 10.1016/j.phymed.2020.153173.

Seo HJ, Park KK, Han SS, Chung WY, Son MW, Kim WB, et al. Inhibitory effects of the standardized extract (DA-9601) of Artemisia asiatica Nakai on phorbol ester-induced ornithine decarboxylase activity, papilloma formation, cyclooxygenase-2 expression, inducible nitric oxide synthase expression and nuclear transcription factor κB activation in mouse skin. Int J Cancer. 2002;100(4):456-462.

DOI: 10.1002/ijc.10489.

Asuzu IU, Sosa S, Della Loggia R. The antiinflammatory activity of Icacina trichantha tuber. Phytomedicine. 1999;6(4):267-272.

DOI: 10.1016/S0944-7113(99)80019-1.

Halici Z, Dengiz GO, Odabasoglu F, Suleyman H, Cadirci E, Halici M. Amiodarone has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan- induced paw edema. Eur J Pharmacol. 2007; 566(1-3):215-221.

DOI: 10.1016/j.ejphar.2007.03.046.

Loram LC, Fuller A, Cartmell T, Mitchell B, Mitchell D. Behavioural, histological and cytokine responses during hyperalgesia induced by carrageenan injection in the rat tail. Physiol Behav. 2007;92(5):873-880.

DOI: 10.1016/j.physbeh.2007.06.015.

Hajhashemi V, Sadeghi H, Minaiyan M, Movahedian A, Talebi A. The role of central mechanisms in the anti-inflammatory effect of amitriptyline on carrageenan-induced paw edema in rats. Clinics. 2010;65(11):1183-1187.

DOI: 10.1590/S1807-59322010001100022.

Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057-1073.

DOI: 10.2147/JIR.S275595.

Pourmorad F, Hosseinimehr SJ, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol. 2006;5(11):1142-1145.

Boligon AA, Janovik V, Boligon AA, Pivetta CR, Pereira RP, Rocha JBTd, et al. HPLC analysis of polyphenolic compounds and antioxidant activity in Nasturtium officinale. Int J Food Prop. 2013;16(1):61-69.

DOI: 10.1080/10942912.2010.528111.

Bouhlali EDT, Hmidani A, Bourkhis B, Khouya T, Ramchoun M, Filali-Zegzouti Y, et al. Phenolic profile and anti-inflammatory activity of four Moroccan date (Phoenix dactylifera L.) seed varieties. Heliyon. 2020;6(2):e03436,1-10.

DOI: 10.1016/j.heliyon.2020.e03436.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.