Investigation of the relationship between miR-33a, miR-122, erythrocyte membrane fatty acids profile, and serum lipids with components of metabolic syndrome in type 2 diabetic patients

Fatemeh Masoudi, Mohammad Reza Sharifi, Morteza Pourfarzam

Abstract


Background and purpose: MicroRNAs (miRNAs) are small non-coding RNA molecules acting as critical regulators of post-transcriptional gene expression. MiR-33a and miR-122 have a crucial role in cholesterol and lipid metabolism. Therefore, their dysregulation may contribute to metabolic abnormality and their inhibition may be a useful therapeutic strategy. The objective of the present study was to investigate the relationship between miR-33a, miR-122, erythrocyte membrane fatty acids profile, and serum lipids with components of metabolic syndrome in an Iranian population suffering from type 2 diabetes mellitus (T2DM).

Experimental approach: Expression of miR-33a and miR-122 was measured by real-time polymerase chain reaction and erythrocyte membrane fatty acid profiles were analyzed by gas chromatography-mass spectrometry.

Findings/Results: T2DM patients with and without metabolic syndrome had significantly higher miR-33a and miR-122 levels compared to controls. MiRNAs were significantly correlated with saturated fatty acid (SFAs), total SFAs/total polyunsaturated fatty acids (PUFAs) ratio, fasting plasma glucose, triacylglycerols, insulin and homeostatic model assessment of insulin resistance. In addition, there was a significant negative correlation between miR-33a and miR-122 levels and PUFAs, total PUFAs/total SFAs ratio and omega 6 fatty acids. 

Conclusion and implications: Considering the roles of miR-33a and miR-122 in cholesterol and lipids metabolism, it may be concluded that the measurement of their expression may be useful as a potential additional biomarker for cardiometabolic derangement in T2DM patients. In addition, these findings may suggest that the inhibition of these miRNAs by anti-miRNA therapies may be explored as a potential therapeutic strategy.

Keywords


Erythrocyte membrane fatty acid profile; Metabolic syndrome; miR-33a; miR-122; Type 2 diabetes.

Full Text:

PDF

References


Abou-Seif MA, Youssef AA. Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta. 2004;346(2):161-170.

DOI: 10.1016/j.cccn.2004.03.030.

Taskinen MR. Diabetic dyslipidemia. Atheroscle Suppl. 2002;3(1):47-51.

DOI: 10.1016/s1567-5688(01)00006-x.

Thrainsdottir IS, Aspelund T, Thorgeirsson G, Hardarson T, Malmberg K, Sigurdsson G, et al. The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care. 2005;28(3):612-616.

DOI: 10.2337/diacare.28.3.612.

Nielson C, Lange T. Blood glucose and heart failure in nondiabetic patients. Diabetes Care. 2005;28(3):607-611.

DOI: 10.2337/diacare.28.3.607.

Panagiotakos DB, Georgousopoulou EN, Pitsavos C, Chrysohoou C, Metaxa V, Georgiopoulos GA, et al. Ten-year (2002-2012) cardiovascular disease incidence and all-cause mortality, in urban Greek population: the ATTICA Study. Int Cardiol. 2015;180:178-184.

DOI: 10.1016/j.ijcard.2014.11.206.

Morris A, Ferdinand KC. Hyperlipidemia in racial/ethnic minorities: differences in lipid profiles and the impact of statin therapy. Clin Lipidol. 2009;4(6):741-754.

DOI: 10.2217/clp.09.70.

Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113(6):673-676.

DOI: 10.1016/s0092-8674(03)00428-8.

Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350-355.

DOI: 10.1038/nature02871.

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215-233.

DOI: 10.1016/j.cell.2009.01.002.

Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102-114.

DOI: 10.1038/nrg2290.

Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92-105.

DOI: 10.1101/gr.082701.108.

Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Suppl 1):D154-158.

DOI: 10.1093/nar/gkm952.

Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48(6):1810-1820.

DOI: 10.1002/hep.22569.

Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ. MicroRNAs in lipid metabolism. Curr Opin Lipidol. 2011;22(2):86-92.

DOI: 10.1097/MOL.0b013e3283428d9d.

Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735-739.

DOI: 10.1016/s0960-9822(02)00809-6.

Fernández-Hernando C, Ramírez CM, Goedeke L, Suárez Y. MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol. 2013;33(2):178-185.

DOI: 10.1161/ATVBAHA.112.300144.

Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87-98.

DOI: 10.1016/j.cmet.2006.01.005.

Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 2009;23(11):1313-1326.

DOI: 10.1101/gad.1781009.

Kojima S, Gatfield D, Esau CC, Green CB. MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver. PloS One. 2010;5(6):e11264,1-7.

DOI: 10.1371/journal.pone.0011264.

Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, Burant CF, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem. 2010;285(44):33652-33661.

DOI: 10.1074/jbc.M110.152090.

Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamorro-Jorganes A, Ramírez CM, et al. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol. 2013;33(11):2339-2352.

DOI: 10.1128/MCB.01714-12.

Rayner KJ, Hennessy EJ. Extracellular communication via microRNA: lipid particles have a new message. J Lipid Res. 2013;54(5):1174-1181.

DOI: 10.1194/jlr.R034991.

Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/-mice. J Am Heart Assoc. 2012;1(6):e003376,1-17.

DOI: 10.1161/JAHA.112.003376.

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502.

PMID: 4337382.

Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-419.

DOI: 10.1007/BF00280883.

Sharifi M, Salehi R, Gheisari Y, Kazemi M. Inhibition of microRNA miR-92a induces apoptosis and inhibits cell proliferation in human acute promyelocytic leukemia through modulation of p63 expression. Mol Biol Rep. 2014;41(5):2799-2808.

DOI: 10.1007/s11033-014-3134-5.

Rodrigues RO, Costa H, Lima R, Amaral JS. Simple methodology for the quantitative analysis of fatty acids in human red blood cells. Chromatographia. 2015;78(19-20):1271-1281.

DOI: 10.1007/s10337-015-2947-2.

Razavi AE, Pourfarzam M, Ani M, Naderi GA. The associations between high-density lipoprotein mean particle size and its fatty acid composition. Biomark Med. 2013;7(2):235-245.

DOI: 10.2217/bmm.12.115.

Yuan JS, Reed A, Chen F, Stewart CN. Statistical analysis of real-time PCR data. BMC Bioinformatics. 2006;7(1):85-96.

DOI: 10.1186/1471-2105-7-85.

Leslie R. Metabolic changes in diabetes. Eye (Lond). 1993;7(Pt 2):205-208.

DOI: 10.1038/eye.1993.49.

Veronica G, Esther RRM. Aging, metabolic syndrome and the heart. Aging Dis. 2012;3(3):269-279.

PMID: 22724085.

Jain HR, Shetty V, Singh G, Shetty S. A study of lipid profile in diabetes mellitus. Int J Sci Study. 2016;4:56-61.

Association AD. Hypertension management in adults with diabetes. Diabetes Care. 2004;27:65-67.

DOI: 10.2337/diacare.27.2007.S65.

Bommer GT, MacDougald OA. Regulation of lipid homeostasis by the bifunctional SREBF2-miR33a locus. Cell Metab. 2011;13(3):241-247.

DOI: 10.1016/j.cmet.2011.02.004.

Fuhrman BJ, Barba M, Krogh V, Micheli A, Pala V, Lauria R, et al. Erythrocyte membrane phospholipid composition as a biomarker of dietary fat. Ann Nutr Metab. 2006;50(2):95-102.

DOI: 10.1159/000090496.

Garnier M, Attali J, Valensi P, Delatour-Hanss E, Gaudey F, Koutsouris D. Erythrocyte deformability in diabetes and erythrocyte membrane lipid composition. Metabolism. 1990;39(8):794-798.

DOI: 10.1016/0026-0495(90)90121-r.

Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH, Investigators AS. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2003;78(1):91-98.

DOI: 10.1093/ajcn/78.1.91.

Suresh Y, Das U. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus: effect of ω-3 fatty acids. Nutrition. 2003;19(2):213-228.

DOI: 10.1016/s0899-9007(02)00856-0.

De Caterina R, Liao JK, Libby P. Fatty acid modulation of endothelial activation. Am J Clin Nutr. 2000;71(1):213-223.

DOI: 10.1093/ajcn/71.1.213S.

neurodegeneration and neuropathic pain. Chem Soc Rev. 2014;43(19):6814-6838.

DOI: 10.1039/c3cs60467e.

Tong L. Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci. 2013;70(5):863-891.

DOI: 10.1007/s00018-012-1096-0.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.