Royal jelly protects dichlorvos liver-induced injury in male Wistar rats

Cyrus Jalili , Mohammad Hossein Farzaei, Iraj Rashidi, Ayda Mohammadnezamian, Ali Ghanbari


Background and purpose: Dichlorvos, an organophosphate insecticide, induces side effects on normal tissues. On the other hand, Royal jelly (RJ) with antioxidant activities has many medical benefits including liver toxicity. In this study, we investigated the role of RJ in improving dichlorvos adverse impact on the liver of male rats.

Experimental approach: Forty-eight male rats were randomly divided into 8 groups (n = 6); receiving by gavage normal saline (0.09%), dichlorvos (4 mg/kg/day), RJ (50, 100, 150 mg/kg/day; RJ 1, 2, 3) or dichlorvos + RJs, daily for 28 consecutive days. At the end of experiments, histopathology alterations, apoptosis induction, and biochemical factors related to the liver were evaluated.

Findings/Results: There was a significant reduction in the number of hepatocytes and total antioxidant capacity (TAC) levels in the dichlorvos group compared to the control group, whereas these parameters in the dichlorvos + RJs groups, were significantly increased compared to the dichlorvos group. Central vein diameter, liver enzymes (aspartate transaminase, alanine transaminase, and alkaline phosphatase) serum levels of nitric oxide, and apoptotic index were significantly higher in the dichlorvos group than in the control, while these parameters were decreased in the dichlorvos + RJs groups versus the dichlorvos group.

Conclusion and implications: RJ at 50 mg/kg protected dichlorvos-induced liver damage in rats. Dichlorvos-hepatitis mechanism could be oxidative induction as long as antioxidant reduction leads to apoptosis                                in this organ, while RJ due to its antioxidant potential suppresses this hazardous cellular and molecular          process.


Antioxidants; Apoptosis; Dichlorvos; Liver.

Full Text:



Karami-Mohajeri S, Abdollahi M. Mitochondrial dysfunction and organophosphorus compounds. Toxicol appl pharmacol. 2013;270(1):39-44.

DOI: 10.1016/j.taap.2013.04.001.

Possamai FP, Fortunato JJ, Feier G, Agostinho FR, Quevedo J, Wilhelm Filho D, et al. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environ Toxicol Pharmacol. 2007;23(2):198-204.

DOI: 10.1016/j.etap.2006.09.003.

Akbel E, Arslan-Acaroz D, Demirel HH, Kucukkurt I, Inced S. The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicol Res. 2018;7(3):503-512.

DOI: 10.1039/c8tx00030a.

Durkin PR, Follansbee MH. Control/Eradication Agents for the Gypsy Moth-Human Health and Ecological Risk Assessment for DDVP (Dichlorvos) Final Report. Fayetteville, New York: Syracuse Environment Research Associates. Inc.; 2004. pp: 1-96.

Bakry NM, el-Rashidy AH, Eldefrawi AT, Eldefrawi ME. Direct actions of organophosphate anticholinesterases on nicotinic and muscarinic acetylcholine receptors. J Biochem Toxicol. 1988;3(4):235-259.

DOI: 10.1002/jbt.2570030404.

Schuh RA, Lein PJ, Beckles RA, Jett DA. Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons. Toxicol Appl Pharmacol. 2002;182(2):176-185.

DOI: 10.1006/taap.2002.9445.

Verma SK, Raheja G, Gill KD. Role of muscarinic signal transduction and CREB phosphorylation in dichlorvos-induced memory deficits in rats: an acetylcholine independent mechanism. Toxicology. 2009;256(3):175-182.

DOI: 10.1016/j.tox.2008.11.017.

Slotkin TA, Lobner D, Seidler FJ. Transcriptional profiles for glutamate transporters reveal differences between organophosphates but similarities with unrelated neurotoxicants. Brain Res Bull. 2010;83(1-2):76-83.

DOI: 10.1016/j.brainresbull.2010.06.010.

Nagai T, Inoue R. Preparation and the functional properties of water extract and alkaline extract of royal jelly. Food Chem. 2004;84(2):181-186.

DOI: 10.1016/S0308-8146(03)00198-5.

Tokunaga KH, Yoshida C, Suzuki KM, Maruyama H, Futamura Y, Araki Y, et al. Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats. Biol Pharm Bull. 2004;27(2):189-192.

DOI: 10.1248/bpb.27.189.

Guo H, Kouzuma Y, Yonekura M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 2009;113(1):238-245.

DOI: 10.1016/j.foodchem.2008.06.081.

Nassar AM, Salim YM, Eid KS, Shaheen HM, Saati AA, Hetta HF, et al. Ameliorative effects of honey, propolis, pollen, and royal jelly mixture against chronic toxicity of sumithion insecticide in white albino rats. Molecules. 2020;25(11):2633-2647.

DOI: 10.3390/molecules25112633.

Abd D, El-Monem DD. The ameliorative effect of royal jelly against malathion genotoxicity in bone marrow and liver of rat. J Am Sci. 2011;7(12):1251-1256.

Aksoy L, Alper Y. The effects of royal jelly on oxidative stress and toxicity in tissues induced by malathion, an organophosphate insecticide. J Hellenic Vet Medical Soc. 2019;70(2):1517-1524.

DOI: 10.12681/jhvms.20827.

Nagai T, Inoue R, Suzuki N, Nagashima T. Antioxidant properties of enzymatic hydrolysates from royal jelly. J Med Food. 2006;9(3):363-367.

DOI: 10.1089/jmf.2006.9.363.

Abu-Serie MM, Habashy NH. Two purified proteins from royal jelly with in vitro dual anti-hepatic damage potency: major royal jelly protein 2 and its novel isoform X1. Int J Biol Macromol. 2019;128:782-795.

DOI: 10.1016/j.ijbiomac.2019.01.210.

Habashy NH, Abu-Serie MM. Major royal-jelly protein 2 and its isoform X1 are two novel safe inhibitors for hepatitis C and B viral entry and replication. Int J Biol Macromol. 2019;141:1072-1087.

DOI: 10.1016/j.ijbiomac.2019.09.080.

Malekinejad H, Ahsan S, Delkhosh-Kasmaie F, Cheraghi H, Rezaei-Golmisheh A, Janbaz-Acyabar H, et al. Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats. Iran J Basic Med Sci. 2016;19(2):221-227.

PMID: 27081469.

Salahshoor MR, Roshankhah S, Hosseni P, Jalili C. Genistein improves liver damage in male mice exposed to morphine. Chin Med J (Engl). 2018;131(13):1598-1604.

DOI: 10.4103/0366-6999.235117.

Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126(1):131-138.

DOI: 10.1016/0003-2697(82)90118-x.

Badehnoosh B, Karamali M, Zarrati M, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M, et al. The effects of probiotic supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. J Matern Fetal Neonatal Med. 2018;31(9):1128-1136.

DOI: 10.1080/14767058.2017.1310193.

Shiravi A, Jalili C, Vaezi G, Chashmyazdan M, Haghdoost AA, Ahmadi Tabatabaei SV, et al. Acacetin attenuates renal damage induced by ischemia reperfusion with declining apoptosis and oxidative stress in mice. Int J Prev Med. 2020;11:165-176.

DOI: 10.4103/ijpvm.

Jalili C, Farzaei MH, Roshankhah S, Salahshoor MR. Resveratrol attenuates malathion-induced liver damage by reducing oxidative stress. J Lab Physicians. 2019;11(3):212-219.

DOI: 10.4103/JLP.JLP_43_19.

Eftekhari A, Ahmadian E, Azami A, Johari-Ahar M, Eghbal MA. Protective effects of coenzyme Q10 nanoparticles on dichlorvos-induced hepatotoxicity and mitochondrial/lysosomal injury. Environ Toxicol. 2018;33(2):167-177.

DOI: 10.1002/tox.22505.

Mehri N, Felehgari H, Harchegani A, Behrooj H, Kheiripour N, Ghasemi H, et al. Hepatoprotective effect of the root extract of green tea against malathion-induced oxidative stress in rats. J HerbMed Pharmacol. 2016;5(3):116-119.

Wang Y, Li D, Cheng N, Gao H, Xue X, Cao W, et al. Antioxidant and hepatoprotective activity of vitex honey against paracetamol induced liver damage in mice. Food Funct. 2015;6(7):2339-2349.

DOI: 10.1039/c5fo00345h.

El-Nekeety AA, El-Kholy W, Abbas NF, Ebaid A, Amra HA, Abdel-Wahhab MA. Efficacy of royal jelly against the oxidative stress of fumonisin in rats. Toxicon. 2007;50(2):256-269.

DOI: 10.1016/j.toxicon.2007.03.017.

Çavuşoğlu K, Yapar K, Oruç E, Yalçın E. The protective effect of royal jelly on chronic lambda-cyhalothrin toxicity: serum biochemical parameters, lipid peroxidation, and genotoxic and histopathological alterations in swiss albino mice. J Med Food. 2011;14(10):1229-1237.

DOI: 10.1089/jmf.2010.0219.

Alp H, Aytekin I, Hatipoglu NK, Alp A, Ogun M. Effects of sulforophane and curcumin on oxidative stress created by acute malathion toxicity in rats. Eur Rev Med Pharmacol Sci. 2012;16 Suppl 3:144-148.

PMID: 22957429.

Beydilli H, Yilmaz N, Cetin ES, Topal Y, Celik OI, Sahin C, et al. Evaluation of the protective effect of silibinin against diazinon induced hepatotoxicity and free-radical damage in rat liver. Iran Red Crescent Med J. 2015;17(4):e25310,1-7.

DOI: 10.5812/ircmj.17(4)2015.25310.

Ibrahim AA. Immunomodulatory effects of royal jelly on aorta CD3, CD68 and eNOS expression in hypercholesterolaemic rats. J Basic Appl Zool. 2014;67(4):140-148.

DOI: 10.1016/j.jobaz.2014.08.006.

Azab KS, Bashandy M, Salem M, Ahmed O, Tawfik Z, Helal H, et al. Royal jelly modulates oxidative stress and tissue injury in gamma irradiated male Wister Albino rats. N Am J Med Sci. 2011;3(6):268-276.

DOI: 10.4297/najms.2011.3268.

Nili-Ahmadabadi A, Alibolandi P, Ranjbar A, Mousavi L, Nili-Ahmadabadi H, Larki-Harchegani A, et al. Thymoquinone attenuates hepatotoxicity and oxidative damage caused by diazinon: an in vivo study. Res Pharm Sci. 2018;13(6):500-508.

DOI: 10.4103/1735-5362.245962.

Sadeghi H, Jahanbazi F, Sadeghi H, Omidifar N, Alipoor B, Kokhdan EP, et al. Metformin attenuates oxidative stress and liver damage after bile duct ligation in rats. Res Pharm Sci. 2019;14(2):122-129.

DOI: 10.4103/1735-5362.253359.

Ghobadi S, Dastan D, Soleimani M, Nili-Ahmadabadi A. Hepatoprotective potential and antioxidant activity of Allium tripedale in acetaminophen-induced oxidative damage. Res Pharm Sci. 2019;14(6):488-495.

DOI: 10.4103/1735-5362.272535.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.