Design, synthesis, and molecular docking of cysteine-based sulphonamide derivatives as antimicrobial agents
Abstract
Background and purpose: The preponderance of microbial infections remains a global challenge. In the present study, synthesis of novel cysteine-based antimicrobial agents and their biological evaluation is reported.
Experimental approach: The reaction of p-toluenesulphonyl chloride with cysteine afforded 2-{[(4-methylphenyl)sulphonyl]amino}-3-sulphanylpropanoic acid (3) which was acetylated based on Lumiere-Barbier method using acetic anhydride. The ammonolysis of the acetylated compound (4) gave the carboxamide derivative (5) which reacted with aniline, aminopyridine and diaminopyrimidine via nickel catalyzed Buchwald-Hartwig amidation reaction to afford compounds 6a, 6b, and 6c, respectively. The compounds were characterized using FTIR, 1H-NMR, 13C-NMR, and elemental analysis. The in vitro antimicrobial activities were determined. Their physicochemical properties were generated in silico and the molecular docking studied bacterial and fungal infections.
Findings/Results: Compounds 4, 6b, and 6c exhibited excellent in vitro antibacterial activities while compound 4 had the best antifungal activities. From the in silico antimicrobial results, compound 3 had a better binding affinity (-10.95 kcal/mol) than penicillin (-10.89 kcal/mol) while compounds 3 and 4 had binding affinities (-10.07 and -10.62kcal/mol) comparable to ketoconazole (-10.85 kcal/mol).
Conclusion and implication: All the synthesized compounds exhibited significant antibacterial and antifungal activities and were confirmed to be potential antimicrobial agents.
Keywords: Antimicrobial activity; Carboxamide; Cysteine; Molecular docking; Sulphonamide.
Keywords
Full Text:
PDFReferences
Goossens H, Ferech M, Vander Stichele R, Elseviers M. Outpatient antibiotic use in Europe and association with resistance: a crossnational database study. Lancet. 2005;365(9459):579-587.
DOI: 10.1016/S0140-6736(05)17907-0.
Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microb. 2014;5:551-565.
DOI: 10.3389/fmicb.2014.00551.
Michael G, Schomburg D. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. 2nd ed. Oxford: Wiley-Blackwell; 2012. pp. 366.
Siebert A, Wysocka M, Krawczyk B, Cholewinski G, Rachon J. Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid. Eur J Med Chem. 2018;143:646-655.
DOI: 10.1016/j.ejmech.2017.11.094.
Bulaj G, Kortemme T, Goldenberg DP. Ionization-reactivity relationships for cysteine thiol in polypeptides. Biochemistry. 1998;37(25):8965-8972.
DOI: 10.1021/bi973101r.
Hell R, Wirtz M. Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. Arabidopsis Book. 2011;e0154,1-14.
DOI: 10.1199/tab.0154.
Lill R, Muhlenhoff U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol. 2006;22:457-486.
DOI: 10.1146/annurev.cellbio.22.010305.104538.
Hui YH, Nip W, Rogers RW, Young OA. Meat science and application. 1th ed. New York: CRC Press; 2001. pp. 207-220.
DOI: 10.1201/9780203908082.
Egbujor MC, Okoro UC. New methionine-based p-toluenesulphonamoylcarboxamide derivatives as antimicrobial and antioxidant agents: design, synthesis, and molecular docking. J Pharm Res Int. 2019;28(1):1-12.
DOI: 10.9734/jpri/2019/v28i130192.
Egbujor MC, Okoro UC, Okafor S, Nwankwo NE. Design, synthesis and molecular docking of novel serine-based sulphonamide bioactive compounds as potential antioxidant and antimicrobial agents. Indo Am J P Sci. 2019;06(06):12232-12240.
DOI: 10.5281/zenodo.3250306.
Henry RJ. The mode of action of sulfonsmides. Bacteriol Rev. 1943;7(4):175-262.
PMID: 16350088.
Egbujor MC, Okoro UC, Okafor S, Nwankwo NE. Synthesis, characterization and in silico studies of novel alkanoylated 4-methylphenyl sulphonamoyl carboxylic acids as potential antimicrobial and antioxidantagents. Int J Pharm Phytopharmacological Res. 2019;9(3):89-97.
Egbujor MC, Okoro UC, Okafor SN, Amasiatu IS, Amadi UB, Egwuatu PI. Synthesis, molecular docking and pharmacological evaluation of new 4-methylphenylsulphamoyl carboxylic acids analogs. Int J Res Pharm Sci. 2020;11(4):5357-5366.
DOI: 10.26452/ijrps.v11i4.3157.
Egbujor, MC, Okoro UC, Egu SA, Egwuatu PI, Eze FU, Amasiatu IS. Synthesis and biological evaluation of alanine derived bioactive p-toluenesulphonamide analogs. Int J Res Pharm Sci. 2020;11(4):6449-6458.
DOI: 10.26452/ijrps.v11i4.3440.
Casini A, Scozzafava A, Mastrolorenzo A, Supuran LT. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr Cancer Drug Targets. 2002;2(1):55-75.
DOI: 10.2174/1568009023334060.
Roskoski RJ. STI-571: Anticancer protein-tyrosine kinase inhibitor. Biochem Biophys Res Commun. 2003;309(4):709-717.
DOI: 10.1016/j.bbrc.2003.08.055.
Ananthanarayanan VS, Tetreault S, Saint-Jean A. Interaction of calcium channel antagonists with calcium: spectroscopic and modeling studies on diltiazem and its Ca2+ complex. J Med Chem. 1993;36(10):1324-1332.
DOI: 10.1021/jm00062a004.
Ju Y, Verma RS. Aqeous N-hererocylization of primary anuries and hydrazines with dihalids microwave-assistant synthesis of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine and phthalazine derivatives. J Org Chem. 2006;71(1):135-141.
DOI: 10.1021/jo051878h.
Parke DV. The Biochemistry of Foreign Compounds. 1th ed. Oxford: Pergamon press; 1968. pp. 224.
Ju Y, Kumar D, Verma RS. Revisiting nucleophilic substifation reactions: microwave-assisted synthesis of azides, thiocyanats and sulfones in an aqeous medium. J Org Chem. 2006;71(17):6697-6700.
DOI: 1021/jo061114h.
Jain KS, Chitre TS, Miniyar PB, Muthu K, Bendre VS, Veer VS, et al. Biological and medical significance of pyrimidine. Curr Sci. 2006;90(6):793-803.
Infectious Society of America, Statement of the IDSA Concerning. Bioshield II: Responding to an Ever-Changing Threat. Alexandria, Va, USA: IDSA; 2004. pp. 2-4.
Coates ARM, Hu Y. Novel approaches to developing new antibiotics for bacterial infections. Br J Pharmacol. 2007;152(8):1147-1154.
DOI: 10.1038/sj.bjp.0707432.
Venanzi LM. Tetrahedral nickel (II) complexes and the factors determining their formation. Part I. Bistriphenylphosphine nickel(II) compounds. J Chem Soc. 1958;3(4):719-724.
DOI: 10.1039/JR9580000719.
Wiegand I, Hilpert K, Hancock REW. Agar and Broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 2008;3:163-175.
DOI: 10.1038/nprot.2007.521.
Panchaud P, Bruyère T, Blumstein AC, Bur D, Chambovey A, Ertel EA, et al. Discovery and optimization of isoquinoline ethyl ureas as antibacterial agents. J Med Chem. 2017;60(9):3755-3775.
DOI: 10.1021/acs.jmedchem.6b01834.
Retailleau P, Colloc’h N, Vivarès D, Bonneté F, Castro B, El Hajji M, et al. Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active site. Acta Crystallogr D Biol Crystallogr. 2005;61(Pt 3):218-229.
DOI: 10.1107/S0907444904031531.
Oksanen E, Blakeley MP, Bonneté F, Dauvergne MT, Dauvergne F, Budayova-Spano M. Large crystal growth by thermal control allows combined X-ray and neutron crystallographic studies to elucidate the protonation states in Aspergillus flavus urate oxidase. J R Soc Interface. 2009;6 Suppl 5(Suppl 5): S599-S610.
DOI: 10.1098/rsif.2009.0162.focus.
Clayden J, Greves N, Warren S, Wothers P. Organic Chemistry. 1th ed. Oxford: Oxford University Press; 2001. pp. 188.
Schotten C. Ueber die oxidation des piperidins. Chem Ber. 1884;17(2):2544-2547.
DOI: 10.1002/cber.188401702178.
Baumann E. Ueber eine einfache method der darstellung von benzoesaureathern. Chem Ber. 1886;19(2):3218-3222.
DOI: 10.1002/cber.188601902348.
Fors BP, Krattiger P, Strieter E, Buchwald SL. Water-mediated catalyst preactivation: an efficient protocol for C-N cross-coupling reactions. Org Lett. 2008;10(16):3505-3508.
DOI: 10.1021/ol801285g.
Craig CR, Stitzel RE. Modern Pharmacology with Clinical Applications. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. Pp. 515-525.
Zessel K, Mohring S, Hamscher G, Kietzmann M, Stahl J. Biocompatibility and antibacterial activity of photolytic products of sulfonamides. Chemosphere. 2014;100:167-174.
DOI: 10.1016/j.chemosphere.2013.11.038.
Egbujor MC, Nwobodo DC, Egwuatu PI, Abu IP, Ezeagu CU. Sulphonamide drugs and pseudomonas aeruginosa resistance: a review. Int J Modern Pharm Res. 2020;4(1):78-83.
Muhammad AQ, Mahmood A, Hina A, Sadia W, Muhammad IS. Amide sulfonamides and benzene sulfonamides: synthesis and their biological evaluation. J Chem. 2015;2015:524056,1-8.
DOI: 101155/2015/524056.
Egbujor MC, Okoro UC, Okafor S. Novel alanine-based antimicrobial and antioxidant agents: synthesis and molecular docking. Indian J Sci Technol. 2020;13(09):1003-1014.
DOI: 10.17485/ijst/2020/v013i09/146687.
Hennicke F, Grumbt M, Lermann U, Ueberschaar N, Palige K, Bottcher B, et al. Factors supporting cysteine tolerance and sulfite production in Candida albicans. Eukaryot Cell. 2013;12(4):604-613.
DOI: 10.1128/EC.00336-12.
Verber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12): 2615-2623.
DOI: 10.1021/jm020017n.
Van de waterbeemd H, Carter RE, Grassy G, Kubinyi H, Martins YC, Tute MS, et al. Grossory of terms used in computational drug design. Pure Appl Chem. 1997;69(5):1137-1152.
Egbujor MC, Okoro UC, Okafor S. Design, synthesis, molecular docking, antimicrobial and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest. Med Chem Res. 2019;28:2118-2127.
DOI: 10.1007/s00044-019-02440-3.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.