Anticonvulsive evaluation and histopathological survey of thalidomide synthetic analogs on lithium-pilocarpine-induced status epilepticus in rats

Arash Amanlou , Faezeh Eslami, Maryam Shayan, Pejman Mortazavi , Ahmad Reza Dehpour


Background and purpose: Status epilepticus is a severe neurological disorder that can be life-threatening. Thalidomide and its analogs have shown promising results to confront pentylenetetrazole-induced seizures. This study aimed to evaluate the potential effects of three synthesized thalidomide derivatives on lithium-pilocarpine-induced status epilepticus.

Experimental approach: To induce status epilepticus, rats received lithium chloride (127 mg/kg, i.p.) and pilocarpine HCl (60 mg/kg, i.p.) 20 h after lithium chloride injection. Thirty min before pilocarpine HCl administration, rats received hyoscine N-butyl bromide (1 mg/kg, i.p.) and concurrently one of the test compounds (5B, 5C, and 5D), diazepam, thalidomide, or vehicle (4% DMSO) to evaluate their anti-epileptic effects. Epileptic seizures scores were assessed through the Racine scale. Twenty-four h after injection of pilocarpine, brain samples were extracted for further histopathological evaluation.

Findings/Results: Results revealed that among tested compounds (5B, 5C, and 5D), only compound 5C                     (1 mg/kg) exhibited excellent anti-epileptic activity comparable to diazepam (10 mg/kg). Compound 5D               (100 mg/kg) only demonstrated comparable anti-epileptic activity to thalidomide (1 mg/kg). Compound 5B did not have any anti-epileptic activity even at the dose of 100 mg/kg. The histopathological survey showed that compound 5C has more neuroprotective effects than diazepam and thalidomide in the cortex of the brain. In the cornu ammonis 1 region, thalidomide had higher protective properties and in the cornu ammonis 3 and dentate gyrus areas, diazepam had higher efficacy to prevent necrosis. 

Conclusion and implications: Compound 5C is a good candidate for further studies regarding its potency, compared to thalidomide and diazepam.




Histopathology; Hippocampus; N-Phthalimide; Status epilepticus; Thalidomide.

Full Text:



Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P, et al. Cyclooxygenase-2 in epilepsy. Epilepsia. 2014;55(1):17-25.

DOI: 10.1111/epi.12461.

Perucca E. Treatment of epilepsy in developing countries. BMJ. 2007;334(7605):1175-1176.

DOI: 10.1136/bmj.39065.460208.80.

Smithson WH, Walker MC. What is Epilepsy? Incidence, Prevalence and Aetiology. In: ABC of Epilepsi. John Wiley & Sons; 2012. pp. 1-3.

Husain AM. Practical Epilepsy. Springer; 2015. Chapter 3, Epileptic Seizures; pp. 28-38. Chapter 4, Epilepsy Syndromes; pp. 39-53.

DOI: 10.1891/9781617051876.

Walker MC. Pathophysiology of status epilepticus. Neurosci Lett. 2018;667:84-91.

DOI: 10.1016/j.neulet.2016.12.044.

Pitkänen A, Buckmaster PS, Galanopoulou AS, Moshé SL. Models of Seizures and Epilepsy. 2nd ed. Elsevier; 2017. pp: 75,143,536.

Fountain NB. Status epilepticus: risk factors and complications. Epilepsia. 2000;41 Suppl 2:S23-S30.

DOI: 10.1111/j.1528-1157.2000.tb01521.x.

Hong Z. Brain Damage Caused by Status Epilepticus. In: Wang X, Li S, editors. Refractory Status Epilepticus: Diagnosis and Treatment. Singapore, Springer; 2017. pp. 61-73.

DOI: 10.1007/978-981-10-5125-8_3.

Jacobson JM. Thalidomide: a remarkable comeback. Expert Opin Pharmacother. 2000;1(4):849-863.

DOI: 10.1517/14656566.1.4.849.

Melchert M, List A. The thalidomide saga. Int J Biochem Cell Biol. 2007;39(7-8):1489-1499.

DOI: 10.1016/j.biocel.2007.01.022.

D'angio P, Maccarty J. Pharmaceutical compositions and dosage forms of thalidomide. United States Patents, 2007. No. US-7230012-B2.

Palencia G, Martinez-Juarez IE, Calderon A, Artigas C, Sotelo J. Thalidomide for treatment of refractory epilepsy. Epilepsy Res. 2010;92(2-3):253-257.

DOI: 10.1016/j.eplepsyres.2010.10.003.

Science Museum. Thalidomide. 2019. Available from:

Kiminejad Malaie P, Asadi M, Hosseini FS, Biglar M, Amanlou M. Synthesis, in vivo and in silico studies of N-aryl-4-(1,3-dioxoisoindolin-2-yl)benzamides as an anticonvulsant agent. Pharm Sci. 2020;26(1):38-44.

DOI: 10.34172/PS.2019.54.

Tabatabaei Rafiei LS, Asadi M, Hosseini FS, Amanlou A, Biglar M, Amanlou M. Synthesis and evaluation of anti-epileptic properties of new phthalimide-4,5-dihydrothiazole-amide derivatives. Polycycl Aromat Compd. 2020:1-11.

DOI: 10.1080/10406638.2020.1776345.

Asadollahi A, Asadi M, Hosseini FS, Ekhtiari Z, Biglar M, Amanlou M. Synthesis, molecular docking, and antiepileptic activity of novel phthalimide derivatives bearing amino acid conjugated anilines. Res Pharm Sci. 2019;14(6):534-543.

DOI: 10.4103/1735-5362.272562.

Mante PK, Adongo DW, Woode E. Anticonvulsant effects of antiaris toxicaria aqueous extract: investigation using animal models of temporal lobe epilepsy. BMC Res Notes. 2017;10:167-175.

DOI: 10.1186/s13104-017-2488-x.

Racine RJ. Modification of seizure activity by electrical stimulation. I. After-discharge threshold. Electroencephalogr Clin Neurophysiol. 1972;32(3):269-279.

DOI: 10.1016/0013-4694(72)90176-9.

Nobakht M, Hoseini SM, Mortazavi P, Sohrabi I, Esmailzade B, Rahbar Rooshandel N, et al. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease. Iran Biomed J. 2011;15(1-2):51-58.

PMID: 21725500.

Fujikawa DG, Pais ES, Aviles Jr ER, Hsieh KC, Bashir MT. Methamphetamine-induced neuronal necrosis: the role of electrographic seizure discharges. Neurotoxicology. 2016;52:84-88.

DOI: 10.1016/j.neuro.2015.11.001.

Kumari P, Singh N, Saha L. Potentiation of pentylenetetrazole-induced neuronal damage by dimethyl sulfoxide in chemical kindling model in rats. Indian J Pharmacol. 2018;50(2):84-87.

DOI: 10.4103/ijp.IJP_559_17.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682.

DOI: 10.1038/nmeth.2019.

Scott RC, Surtees R, Neville B. Status epilepticus: pathophysiology, epidemiology, and outcomes. Arch Dis Child. 1998;79(1):73-77.

DOI: 10.1136/adc.79.1.73.

Alldredge BK. Status epilepticus: a clinical perspective. Ann Pharmacother. 2006;40(3):577-577.

DOI: 10.1345/aph.1G518.

Griffiths T, Evans MC, Meldrum BS. Status epilepticus: the reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus. Neuroscience. 1984;12(2):557-567.

DOI: 10.1016/0306-4522(84)90073-3.

Faingold CL, Fromm GH. Drugs for Control of Epilepsy: Actions on Neuronal Networks Involved in Seizure Disorders. 1th ed. Boca Raton: CRC Press; 1992. pp: 195-211.

DOI: 10.1201/9780429262623.

McCandless DW. Epilepsy: Animal and Human Correlations. 1th ed. New York: Springer; 2012. pp: 309,437.

DOI: 10.1007/978-1-4614-0361-6.

Muller CJ, Bankstahl M, Groticke I, Loscher W. Pilocarpine vs. lithium-pilocarpine for induction of status epilepticus in mice: development of spontaneous seizures, behavioral alterations and neuronal damage. Eur J Pharmacol. 2009;619(1-3):15-24.

DOI: 10.1016/j.ejphar.2009.07.020.

Gonzalez-Reyes S, Santillan-Cigales JJ, Jimenez-Osorio AS, Pedraza-Chaverri J, Guevara-Guzman R. Glycyrrhizin ameliorates oxidative stress and inflammation in hippocampus and olfactory bulb in lithium/pilocarpine-induced status epilepticus in rats. Epilepsy Res. 2016;126:126-133.

DOI: 10.1016/j.eplepsyres.2016.07.007.

Terrone G, Frigerio F, Balosso S, Ravizza T, Vezzani A. Inflammation and reactive oxygen species in status epilepticus: biomarkers and implications for therapy. Epilepsy Behav. 2019;101(Pt B):106275,1-9.

DOI: 10.1016/j.yebeh.2019.04.028.

Ashhab MU, Omran A, Kong H, Gan N, He F, Peng J, et al. Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci. 2013;51(3):950-958.

DOI: 10.1007/s12031-013-0013-9.

Pourshadi N, Rahimi N, Ghasemi M, Faghir-Ghanesefat H, Sharifzadeh M, Dehpour AR. Anticonvulsant effects of thalidomide on pentylenetetrazole-induced seizure in mice: a role for opioidergic and nitrergic transmissions. Epilepsy Res. 2020;164:106362.

DOI: 10.1016/j.eplepsyres.2020.106362.

Islas-Espinoza AM, Campos-Rodriguez C, San Juan ER. Thalidomide protects against acute pentylenetetrazol and pilocarpine-induced seizures in mice. J Toxicol Sci. 2018;43(11):671-684.

DOI: 10.2131/jts.43.671.

Davood A, Shafaroodi H, Amini M, Nematollahi A, Shirazi M, Iman M. Design, synthesis and protection against pentylenetetrazole-induced seizure of N-aryl derivatives of the phthalimide pharmacophore. Med Chem. 2012;8(5):953-963.

DOI: 10.2174/157340612802084289.

Eslami SM, Ghasemi M, Bahremand T, Momeny M, Gholami M, Sharifzadeh M, et al. Involvement of nitrergic system in anticonvulsant effect of zolpidem in lithium-pilocarpine induced status epilepticus: evaluation of iNOS and COX-2 genes expression. Eur J Pharmacol. 2017;815:454-461.

DOI: 10.1016/j.ejphar.2017.10.002.

Palencia G, Rubio C, Custodio-Ramirez V, Paz C, Sotelo J. Strong anticonvulsant effect of thalidomide on amygdaloid kindling. Epilepsy Res. 2011;95(3):263-269.

DOI: 10.1016/j.eplepsyres.2011.04.008.

Payandemehr B, Rahimian R, Gooshe M, Bahremand A, Gholizadeh R, Berijani S, et al. Nitric oxide mediates the anticonvulsant effects of thalidomide on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav. 2014;34:99-104.

DOI: 10.1016/j.yebeh.2014.03.020.

Peterson PK, Hu S, Sheng WS, Kravitz FH, Molitor TW, Chatterjee D, et al. Thalidomide inhibits tumor necrosis factor-alpha production by lipopolysaccharide- and lipoarabinomannan-stimulated human microglial cells. J Infect Dis. 1995;172(4):1137-1140.

DOI: 10.1093/infdis/172.4.1137.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.