Design of a chitosan-based nano vaccine against epsilon toxin of Clostridium perfringens type D and evaluation of its immunogenicity in BALB/c mice

Farnaz Poorhassan , Fahimeh Nemati, Parvaneh Saffarian, Seyed Ali Mirhosseini , Mohammad Javad Motamedi

Abstract


Background and purpose: Clostridium perfringens is an anaerobic, spore-forming, and pathogenic bacterium that causes intestinal diseases in humans and animals. In these cases, therapeutic intervention is challenging; because the disease progresses much rapidly. This bacterium can produce 5 main toxins (alpha, beta, epsilon, iota, and a type of enterotoxin) among which the epsilon toxin (ETX) is used for bioterrorism. This toxin can be prevented by immunization with specific immunogenic vaccines. In the present research, we aimed at developing a recombinant chitosan-based nano-vaccine against ETX of C. perfringens and evaluate its effects on the antibody titration against epsilon toxin in BALB/c mice as the vaccine model.

Experimental approach: The etx gene from C. perfringens type D was cloned and expressed in E. coli. After analysis by SDS-PAGE and western blotting, the expressed products were purified, and the obtained proteins were used for immunization in mice as a chitosan nanoparticle containing recombinant, purified ETX, and protein.

Findings/Results: The results of ELISA showed that IgA antibody serum level increased sufficiently using recombinant protein with nanoparticle as an oral and injectable formulation. IgG antibody titers increased significantly after administrating the recombinant proteins with nanoparticles through both oral delivery and intravenous injection.

Conclusion and implication: In conclusion, the recombinant ETX is suggested as a good candidate for vaccine production against diseases caused by ETX of C. perfringens type D.


Keywords


Chitosan; Clostridium perfringens; Epsilon toxin; Immunization; Nano-vaccine.

Full Text:

PDF

References


Hassan KA, Elbourne LD, Tetu SG, Melville SB, Rood JI, Paulsen IT. Genomic analyses of Clostridium perfringens isolates from five toxinotypes. Res Microbiol. 2015;166(4):255-263.

DOI: 10.1016/j.resmic.2014.10.003.

Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. 2018;7(1):141-155.

DOI: 10.1038/s41426-018-0144-8.

Sim K, Shaw AG, Randell P, Cox MJ, McClure ZE, Li MS, et al. Dysbiosis anticipating necrotizing enterocolitis in very premature infants. Clin Infect Dis. 2015;60(3):389-397.

DOI: 10.1093/cid/ciu822.

Heida FH, van Zoonen AG, Hulscher JB, Te Kiefte BJ, Wessels R, Kooi EM, et al. A necrotizing enterocolitis-associated gut microbiota is present in the meconium: results of a prospective study. Clin Infect Dis. 2016;62(7):863-870.

DOI: 10.1093/cid/ciw016.

Titball RW. Clostridium perfringens vaccines. Vaccine. 2009;27 Suppl 4:D44-D477.

DOI: 10.1016/j.vaccine.2009.07.047.

Songer JG. Clostridia as agents of zoonotic disease. Vet Microbiol. 2010;140(3-4):399-404.

DOI: 10.1016/j.vetmic.2009.07.003.

Azimirad M, Gholami F, Yadegar A, Knight DR, Shamloei S, Aghdaei HA, et al. Prevalence and characterization of Clostridium perfringens toxinotypes among patients with antibiotic-associated diarrhea in Iran. Sci Rep. 2019;9(1):7792-7800.

DOI: 10.1038/s41598-019-44281-5.

Garcia J, Adams V, Beingesser J, Hughes ML, Poon R, Lyras D, et al. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice. Infect Immun. 2013;81(7):2405-2414.

DOI: 10.1128/IAI.00238-13.

Miyata S, Minami J, Tamai E, Matsushita O, Shimamoto S, Okabe A. Clostridium perfringens ε-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes. J Biol Chem. 2002;277(42):39463-39468.

DOI: 10.1074/jbc.M206731200.

Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N-and C-terminal peptides. Microbiol Immunol. 1997;41(7):527-535.

DOI: 10.1111/j.1348-0421.1997.tb01888.x.

Bokori‐Brown M, Savva CG, da Costa SPF, Naylor CE, Basak AK, Titball RW. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J. 2011;278(23):4589-4601.

DOI: 10.1111/j.1742-4658.2011.08140.x.

Petit L, Gibert M, Gillet D, Laurent-Winter C, Boquet P, Popoff MR. Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex. J Bacteriol. 1997;179(20):6480-6487.

DOI: 10.1128/jb.179.20.6480-6487.1997.

Casadevall A. Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerg Infect Dis. 2002;8(8):833-841.

DOI: 10.3201/eid0808.010516.

McDonel JL. Clostridium perfringens toxins (type A, B, C, D, E). Pharmacol Ther. 1980;10(3):617-655.

DOI: 10.1016/0163-7258(80)90031-5.

Lonchamp E, Dupont JL, Wioland L, Courjaret R, Mbebi-Liegeois C, Jover E, et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release. PloS One. 2010;5(9):e13046,1-15.

DOI: 10.1371/journal.pone.0013046.

Moreira GMSG, Salvarani FM, Da Cunha CEP, Mendonça M, Moreira ÂN, Gonçalves LA, et al. Immunogenicity of a trivalent recombinant vaccine against Clostridium perfringens alpha, beta, and epsilon toxins in farm ruminants. Sci Rep. 2016;6:22816-22824.

DOI: 10.1038/srep22816.

Singla A, Chawla M. Chitosan: some pharmaceutical and biological aspects‐an update. J Pharm Pharmacol. 2001;53(8):1047-1467.

DOI: 10.1211/0022357011776441.

Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release. 2006;111(1-2):107-116.

DOI: 10.1016/j.jconrel.2005.11.014.

des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1-27.

DOI: 10.1016/j.jconrel.2006.08.013.

Alimolaei M, Golchin M, Daneshvar H. Oral immunization of mice against Clostridium perfringens epsilon toxin with a Lactobacillus casei vector vaccine expressing epsilon toxoid. Infect Genet Evol. 2016;40:282-287.

DOI: 10.1016/j.meegid.2016.03.020.

Fernandez-Miyakawa ME, Sayeed S, Fisher DJ, Poon R, Adams V, Rood JI, et al. Development and application of an oral challenge mouse model for studying Clostridium perfringens type D infection. Infect Immun. 2007;75(9):4282-4288.

DOI: 10.1128/IAI.00562-07.

Souza A, Reis J, Assis R, Horta C, Siqueira F, Facchin S, et al. Molecular cloning and expression of epsilon toxin from Clostridium perfringens type D and tests of animal immunization. Genet Mol Res. 2010;9(1):266-276.

DOI: 10.4238/vol9-1gmr711.

Yao W, Kang J, Kang L, Gao S, Yang H, Ji B, et al. Immunization with a novel Clostridium perfringens epsilon toxin mutant rETX Y196E-C confers strong protection in mice. Sci Rep. 2016;6:24162-24168.

DOI: 10.1038/srep24162.

Bernath S, Fabian K, Kádár I, Szita G, Barna T. Optimum time interval between the first vaccination and the booster of sheep for Clostridium perfringens type D. Acta Vet Brno. 2004;73(4):473-475.

DOI: 10.2754/avb200473040473.

Mirhosseini SA, Fooladi AAI, Amani J, Sedighian H. Production of recombinant flagellin to develop ELISA-based detection of Salmonella Enteritidis. Braz J Microbiol. 2017;48(4):774-781.

DOI: 10.1016/j.bjm.2016.04.033.

Fattahian Y, Rasooli I, Gargari SLM, Rahbar MR, Astaneh SDA, Amani J. Protection against Acinetobacter baumannii infection via its functional deprivation of biofilm associated protein (Bap). Microb Pathog. 2011;51(6):402-406.

DOI: 10.1016/j.micpath.2011.09.004.

Ghasemi A, Mohammad N, Mautner J, Karsabet MT, Amani J, Ardjmand A, et al. Immunization with a recombinant fusion protein protects mice against Helicobacter pylori infection. Vaccine. 2018;36(34):5124-5132.

DOI: 10.1016/j.vaccine.2018.07.033.

Juckett G, Bardwell G, McClane B, Brown S. The microbiology of salt rising bread. W V Med J. 2008;104(4):26-27.

PMID: 18646681.

Warrell DA, Benz Jr EJ, Cox TM, Firth JD. Oxford Textbook of Medicine. 4th ed. Oxford: Oxford University Press; 2003. pp. 3.

Hwang PM, Pan JS, Sykes BD. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli. FEBS Lett. 2014;588(2):247-252.

DOI: 10.1016/j.febslet.2013.09.028.

Langroudi RP, Shamsara M, Aghaiypour K. Expression of Clostridium perfringens epsilon-beta fusion toxin gene in E. coli and its immunologic studies in mouse. Vaccine. 2013;31(32):3295-3299.

DOI: 10.1016/j.vaccine.2013.04.061.

Sørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact. 2005;4(1):1-7.

DOI: 10.1186/1475-2859-4-1.

Mathur DD, Deshmukh S, Kaushik H, Garg LC. Functional and structural characterization of soluble recombinant epsilon toxin of Clostridium perfringens D, causative agent of enterotoxaemia. Appl Microbiol Biotechnol. 2010;88(4):877-884.

DOI: 10.1007/s00253-010-2785-y.

Kulkarni R, Parreira V, Sharif S, Prescott J. Oral immunization of broiler chickens against necrotic enteritis with an attenuated Salmonella vaccine vector expressing Clostridium perfringens antigens. Vaccine. 2008;26(33):4194-4203.

DOI: 10.1016/j.vaccine.2008.05.079.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.