JPX and LINC00641 ncRNAs expression in prostate tissue: a case-control study

Roshanak S. Sajjadi , Mohammad Hossein Modarressi, Mohammad Amin Tabatabaiefar

Abstract


 

Background and purpose: Prostate cancer (PC) is the second most prevalent cancer in men. Prostate-specific antigen (PSA) is the main biomarker for screening PC. An increase in PSA could lead to false-positive results. Thus, more appropriate markers should be investigated. In the present study, JPX and LINC00641 expression levels were measured in tumoral prostate tissue compared with the non-tumor tissue.

Experimental approach: 43 pairs of prostate tumoral and non-tumor tissue were prepared. The expression levels of JPX and LINC00641 were investigated by RT-qPCR.

Findings/Results: Significant upregulation of LINC00641 (2.47 ± 0.5 vs 1.41 ± 0.2) and downregulation of JPX (1.42 ± 0.6 vs 2.83 ± 1.0) were observed in PC tissues compared with the normal tissues (their adjacent non-tumoral tissues).

Conclusion and implications: Dysregulation of JPX and LINC00641 in PC patients could be used in the future as a prognostic biomarker in PC.


Keywords


Gene expression; JPX; LINC00641; Long non-coding RNA; Prostate cancer.

References


Hassanipour-Azgomi S, Mohammadian-Hafshejani A, Ghoncheh M, Towhidi F, Jamehshorani S, Salehiniya H. Incidence and mortality of prostate cancer and their relationship with the Human Development Index worldwide. Prostate Int. 2016;4(3):118-124.

DOI: 10.1016/j.prnil.2016.07.001.

Rigau M, Olivan M, Garcia M, Sequeiros T, Montes M, Colás E, et al. The present and future of prostate cancer urine biomarkers. Int J Mol Sci. 2013;14(6):12620-12649.

DOI: 10.3390/ijms140612620.

Iczkowski KA, Lucia MS. Current perspectives on Gleason grading of prostate cancer. Curr Urol Rep. 2011;12(3):216-222.

DOI: 10.1007/s11934-011-0181-5.

Epstein JI. An update of the Gleason grading system. J Urol. 2010;183(2):433-440.

DOI: 10.1016/j.juro.2009.10.046.

Fine SW. Prostate Cancer Reporting on Biopsy and Radical Prostatectomy Specimens. In: Magi-Galluzzi C, Przybycin CG. editors. Genitourinary Pathology. Springer; 2015. pp. 45-64.

DOI: 10.1007%2F978-1-4939-2044-0.

Lai MHY, Luk WH, Chan JCS. Predicting bone scan findings using sPSA in patients newly diagnosed of prostate cancer: feasibility in Asian population. Urol Oncol. 2011;29(3):275-279.

DOI: 10.1016/j.urolonc.2009.05.007.7.

Kinoshita H, Shimizu Y, Mizowaki T, Takayama K, Norihisa Y, Kamoto T, et al. Risk factors predicting the outcome of salvage radiotherapy in patients with biochemical recurrence after radical prostatectomy. Int J Urol. 2013;20(8):806-811.

DOI: 10.1111/iju.12049.

Sharma S, Zapatero-Rodríguez J, O’Kennedy R. Prostate cancer diagnostics: clinical challenges and the ongoing need for disruptive and effective diagnostic tools. Biotechnol Adv. 2017;35(2):135-149.

DOI: 10.1016/j.biotechadv.2016.11.009.

Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11-22.

DOI: 10.1016/j.ccr.2010.05.026.

Chew CL, Lunardi A, Gulluni F, Ruan DT, Chen M, Salmena L, et al. In vivo role of INPP4B in tumor and metastasis suppression through regulation of PI3K/AKT signaling at endosomes. Cancer Discov. 2015;5(7):740-751.

DOI: 10.1158/2159-8290.CD-14-1347.

Azemikhah M, Ashtiani HA, Aghaei M, Rastegar H. Evaluation of discoidin domain receptor-2 (DDR2) expression level in normal, benign, and malignant human prostate tissues. Res Pharm Sci. 2015;10(4):356-363.

PMID: 26600862.

Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013;108:2419-2425.

DOI: 10.1038/bjc.2013.233.

Han D, Wang M, Ma N, Xu Y, Jiang Y, Gao X. Long noncoding RNAs: novel players in colorectal cancer. Cancer Lett. 2015;361(1):13-21.

DOI: 10.1016/j.canlet.2015.03.002.

Zhang Y, Xu Y, Feng L, Li F, Sun Z, Wu T, et al. Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers. Oncotarget. 2016;7(39):64148-64167.

DOI: 10.18632/oncotarget.11637.

Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425(19):3723-3730.

DOI: 10.1016/j.jmb.2012.11.024.

Tabatabaiefar MA, Sajjadi RS, Narrei S. Epigenetics and common non communicable disease. Adv Exp Med Biol. 2019;1121:7-20.

DOI: 10.1007/978-3-030-10616-4_2.

Rönnau CGH, Verhaegh GW, Luna-Velez MV, Schalken JA. Noncoding RNAs as novel biomarkers in prostate cancer. Biomed Res Int. 2014;2014:591703,1-17.

DOI: 10.1155/2014/591703.

Svoboda M, Slyskova J, Schneiderova M, Makovicky P, Bielik L, Levy M, et al. HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis. 2014;35(7):1510-1515.

DOI: 10.1093/carcin/bgu055.

Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353-358.

DOI: 10.1016/j.cell.2011.07.014.

Ghavimi R, Mohammadi E, Akbari V, Shafiee F, Jahanian-Najafabadi A. In silico design of two novel fusion proteins, p28-IL-24 and p28-M4, targeted to breast cancer cells. Res Pharm Sci. 2020;15(2):200-208.

DOI: 10.4103/1735-5362.283820.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402-408.

DOI: 10.1006/meth.2001.1262.

Velonas VM, Woo HH, Remedios CG dos, Assinder SJ. Current status of biomarkers for prostate cancer. Int J Mol Sci. 2013;14(6):11034-11060.

DOI: 10.3390/ijms140611034.

Kashi K, Henderson L, Bonetti A, Carninci P. Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta. 2016;1859(1):3-15.

DOI: 10.1016/j.bbagrm.2015.10.010.

Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 2016;14(1):42-54.

DOI: 10.1016/j.gpb.2015.09.006.

Akbarian F, Tabatabaiefar MA, Shaygannejad V, Shahpouri MM, Badihian N, Sajjadi R, et al. Upregulation of MTOR, RPS6KB1, and EIF4EBP1 in the whole blood samples of Iranian patients with multiple sclerosis compared to healthy controls. Metab Brain Dis. 2020;35(8):1309-1316.

DOI: 10.1007/s11011-020-00590-7.

Phin S, Moore M, Cotter PD. Genomic rearrangements of PTEN in prostate cancer. Front Oncol. 2013;3:240-248.

DOI: 10.3389/fonc.2013.00240.

Crumbaker M, Khoja L, Joshua A. AR signaling and the PI3K pathway in prostate cancer. Cancers (Basel). 2017;9(4):34-48.

DOI: 10.3390/cancers9040034.

Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl. 2014;16(3):378-386.

DOI: 10.4103/1008-682X.122876.

Bitting RL, Armstrong AJ. Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer. 2013;20(3):R83-R99.

DOI: 10.1530/ERC-12-0394.

Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci. 2017;13(7):815-827.

DOI: 10.7150/ijbs.20052.

Asmarinah A, Paradowska-Dogan A, Kodariah R, Tanuhardja B, Waliszewski P, Mochtar CA, et al. Expression of the Bcl-2 family genes and complexes involved in the mitochondrial transport in prostate cancer cells. Int J Oncol. 2014;45(4):1489-1496.

DOI: 10.3892/ijo.2014.2576.

Pietri E, Conteduca V, Andreis D, Massa I, Melegari E, Sarti S, et al. Androgen receptor signaling pathways as a target for breast cancer treatment. Endocr Relat Cancer. 2016;23(10):R485-R498.

DOI: 10.1530/ERC-16-0190.

Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, et al. Down‐regulation of Notch‐1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J Cell Biochem. 2011;112(1):78-88.

DOI: 10.1002/jcb.22770.

Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM. MYC and prostate cancer. Genes Cancer. 2010;1(6):617-628.

DOI: 10.1177/1947601910379132.

Chen Q, Zhou W, Han T, Du S, Li Z, Zhang Z, et al. MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo. Tumour Biol. 2016;37(2):2095-2103.

DOI: 10.1007/s13277-015-3996-8.

Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 2013;32(3):296-306.

DOI: 10.1038/onc.2012.58.

Zhang Z, Sun J, Bai Z, Li H, He S, Chen R, et al. MicroRNA-153 acts as a prognostic marker in gastric cancer and its role in cell migration and invasion. Onco Targets Ther. 2015;8:357-364.

DOI: 10.2147/OTT.S78236.

Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 2014;65(6):1140-1151.

DOI: 10.1016/j.eururo.2013.12.003.

Tian D, Sun S, Lee JT. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell. 2010;143(3):390-403.

DOI: 10.1016/j.cell.2010.09.049.

Chaligné R, Heard E. X-chromosome inactivation in development and cancer. FEBS Lett. 2014;588(15):2514-2522.

DOI: 10.1016/j.febslet.2014.06.023.

Zhang L, Yang F, Yuan J, Yuan S, Zhou W, Huo X, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577-586.

DOI: 10.1093/carcin/bgs381.

Ma W, Wang H, Jing W, Zhou F, Chang L, Hong Z, et al. Downregulation of long non-coding RNAs JPX and XIST is associated with the prognosis of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2017;41(2):163-170.

DOI: 10.1016/j.clinre.2016.09.002.

Li J, Feng L, Tian C, Tang YL, Tang Y, Hu FQ. Long noncoding RNA-JPX predicts the poor prognosis of ovarian cancer patients and promotes tumor cell proliferation, invasion and migration by the PI3K/Akt/mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22(23):8135-8144.

DOI: 10.26355/eurrev_201812_16505.

Jin M, Ren J, Luo M, You Z, Fang Y, Han Y, et al. Long non-coding RNA JPX correlates with poor prognosis and tumor progression in non-small-cell lung cancer by interacting with miR-145-5p and CCND2. Carcinogenesis. 2020;41(5):634-645.

DOI: 10.1093/carcin/bgz125.

Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, et al. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer. 2020;19(1):9-25.

DOI: 10.1186/s12943-020-1133-9.

Yarmishyn AA, Kurochkin IV. Long noncoding RNAs: a potential novel class of cancer biomarkers. Front Genet. 2015;6:145-154.

DOI: 10.3389/fgene.2015.00145.

Lin R, Zhao C, Jing L, Zhao S. Identification of LncRNAs/mRNAs related to endometrium function regulated by Homeobox A10 in Ishikawa cells. Cell Biol Int. 2015;39(7):842-851.

DOI: 10.1002/cbin.10458.

Li B, Cao X, Weng C, Wu Y, Fang X, Zhang X, et al. HoxA10 induces proliferation in human prostate carcinoma PC-3 cell line. Cell Biochem Biophys. 2014;70(2):1363-1368.

DOI: 10.1007/s12013-014-0065-7.

Wang J, Liu ZH, Yu LJ. Long non-coding RNA LINC00641 promotes cell growth and migration through modulating miR-378a/ZBTB20 axis in acute myeloid leukemia. Eur Rev Med Pharmacol Sci. 2019;23(17):7498-7509.

DOI: 10.26355/eurrev_201909_18864.

Li Z, Hong S, Liu Z. LncRNA LINC00641 predicts prognosis and inhibits bladder cancer progression through miR-197-3p/KLF10/PTEN/PI3K/AKT cascade. Biochem Biophys Res Commun. 2018;503(3):1825-1829.

DOI: 10.1016/j.bbrc.2018.07.120.

Liang R, Zhi Y, Zheng G, Zhang B, Zhu H, Wang M. Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, Cox regression, and L1-LASSO penalization. Onco Targets Ther. 2018;12:157-168.

DOI: 10.2147/OTT.S171957.

Mao Q, Lv M, Li L, Sun Y, Liu S, Shen Y, et al. Long intergenic noncoding RNA 00641 inhibits breast cancer cell proliferation, migration, and invasion by sponging miR‐194‐5p. J Cell Physiol. 2020;235(3):2668-2675.

DOI: 10.1002/jcp.29170.

Zhang Y, Yu R, Li L. LINC00641 hinders the progression of cervical cancer by targeting miR‐378a‐3p/CPEB3. J Gene Med. 2020;22(9):e3212.

DOI: 10.1002/jgm.3212.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.