Effects of Piper nigrum fruit and Cinnamum zeylanicum bark alcoholic extracts, alone and in combination, on scopolamine-induced memory impairment in mice

Mohammad Teymuori , Afsaneh Yekdaneh, Mohammad Rabbani

Abstract


Background and purpose: Alzheimer's disease is a progressive brain disorder that is thought to be triggered via disruption of cholinergic neurons and enhanced oxidative stress. Therefore, antioxidant phytochemicals with the ability to fortify cholinergic function should help in preventing the progress of the disease. This study aimed at evaluating the combinational effects of two popular herbs one with anticholinesterase activity namely Piper nigrum and the other with antioxidant capacity, Cinnamomum zeylanicum.
Experimental approach: In this study, P. nigrum extract (PN) (50, 100 mg/kg, ip) and C. zeylanicum extract (CZ) (100, 200, 400 mg/kg, ip) and their combinations were administered for 8 days before the injection of scopolamine (1 mg/kg, ip). Mice were then tested for their memory using two behavioral models, namely the object recognition test and the passive avoidance task.
Findings/Results: Administration of scopolamine significantly impaired memory performance in both memory paradigms. In the passive avoidance test (PAT) model, PN at doses up to 100 mg/kg and CZ at doses up to 400 mg/kg did not significantly alter the memory impairment induced by scopolamine. The combination of these two plant extracts did not change the PAT parameters. In the object recognition test (ORT) model, however, administration of 100 mg/kg CZ alone and a combination of PN (50 mg/kg) with CZ (400 mg/kg), significantly increased the recognition index (P < 0.05).
Conclusion and implications: Two plant extracts when administered alone or in combinations affected the memory performance differently in two memory paradigms. In the PAT model, the extracts did not show any memory improvement, in ORT, however, some improvements were observed after plant extracts.


Keywords


Alzheimer; Cinnamum zeylanicum; Piper nigrum; Scopolamine.

References


de la Torre JC. Is Alzheimer's disease a neurodegenerative or a vascular disorder. data, dogma, and dialectics. Lancet Neurol. 2004;3(3):184-190.

DOI: 10.1016/S1474-4422(04)00683-0.

Hritcu L, Noumedem JA, Cioanca O, Hancianu M, Kuete V, Mihasan M. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta (1-42) rat model of Alzheimer’s disease. Cell Mol Neurobiol. 2014;34(3):437-449.

DOI: 10.1007/s10571-014-0028-y.

Adams M, Gmünder F, Hamburger M. Plants traditionally used in age related brain disorders-a survey of ethnobotanical literature. J Ethnopharmacol. 2007;113(3):363-381.

DOI: 10.1016/j.jep.2007.07.016.

Perry E, Howes MJR. Medicinal plants and dementia therapy: herbal hopes for brain aging. CNS Neurosci Ther. 2011;17(6):683-698.

DOI: 10.1111/j.1755-5949.2010.00202.x.

Joshi DR, Shrestha AC, Adhikari N. A review on diversified use of the king of spices: Piper nigrum (Black Pepper). Int J Pharm Sci Res. 2018;9(10):4089-4101.

DOI: 10.13040/IJPSR.0975-8232.

Iqbal G, Iqbal A, Mahboob A, Farhat SM, Ahmed T. Memory enhancing effect of black pepper in the AlCl3 induced neurotoxicity mouse model is mediated through its active component chavicine. Curr Pharm Biotechnol. 2016;17(11):962-973.

DOI: 10.2174/1389201017666160709202124.

Tu Y, Zhong Y, Du H, Luo W, Wen Y, Li Q, et al. Anticholinesterases and antioxidant alkamides from Piper nigrum fruits. Nat Prod Res. 2016;30(17):1945-1949.

DOI: 10.1080/14786419.2015.1089243.

Mohamed AE, Abdur R, Sadeek MM. Cinnamon bark as antibacterial agent: a mini-review. GSC Biol Pharm Sci. 2020;10(1):103-108.

DOI: 10.30574/gscbps.2020.10.1.0012.

Jain S, Sangma T, Shukla SK, Mediratta PK. Effect of Cinnamomum zeylanicum extract on scopolamine-induced cognitive impairment and oxidative stress in rats. Nutr Neurosci. 2015;18(5):210-216.

DOI: 10.1179/1476830514Y.0000000113.

Frydman-Marom A, Levin A, Farfara D, Benromano T, Scherzer-Attali R, Peled S, et al. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer's disease animal models. PloS One. 2011;6(1):e16564,1-11.

DOI: 10.1371/journal.pone.0016564.

Avneet G, Pal S, Siddhraj SS. A review on herbal Ayurvedic medicinal plants and its association with memory functions. J Phytopharmacol. 2018;7(2):162-166.

Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol. 2019;14(2):278-294.

DOI: 10.1007/s11481-018-9824-3.

Ko YH, Kwon SH, Ma SX, Seo JY, Lee BR, Kim K, et al. The memory-enhancing effects of 7,8,4’-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Res Bull. 2018;142:197-206.

DOI: 10.1016/j.brainresbull.2018.07.012.

Skalicka-Wozniak K, Budzynska B, Biala G, Boguszewska-Czubara A. Scopolamine-induced memory impairment is alleviated by xanthotoxin: role of acetylcholinesterase and oxidative stress processes. ACS Chem Neurosci. 2018;9(5):1184-1194.

DOI: 10.1021/acschemneuro.8b00011.

Ionita R, Postu PA, Beppe GJ, Mihasan M, Petre BA, Hancianu M, et al. Cognitive-enhancing and antioxidant activities of the aqueous extract from Markhamia tomentosa (Benth.) K. Schum. stem bark in a rat model of scopolamine. Behav Brain Funct. 2017;13:5-17.

DOI: 10.1186/s12993-017-0123-6.

Everette JD, Bryant QM, Green AM, Abbey YA, Wangila GW, Walker RB. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J Agric Food Chem. 2010;58(14):8139-8144.

DOI: 10.1021/jf1005935.

Safavi M, Hosseini-Sharifabad A, Seyed-Yousefi Y, Rabbani M. Protective effects of citicoline and benfotiamine each alone and in combination on streptozotocin-induced memory impairment in mice. Clin Psychopharmacol Neurosci. 2020;18(1):81-92.

DOI: 10.9758/cpn.2020.18.1.81.

Ng YP, Or TCT, Ip NY. Plant alkaloids as drug leads for Alzheimer's disease. Neurochem Int. 2015;89:260-270.

DOI: 10.1016/j.neuint.2015.07.018.

Obulesu M, Rao DM. Effect of plant extracts on Alzheimer's disease: an insight into therapeutic avenues. J Neurosci Rural Pract. 2011;2(1):56-61.

DOI: 10.4103/0976-3147.80102.

Hammond RS, Tull LE, Stackman RW. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem. 2004;82(1):26-34.

DOI: 10.1016/j.nlm.2004.03.005.

Maren S. Emotional Learning: Animals. In: Byrne, John H, editor. Learning and Memory: A Comprehensive Reference. 1nd ed. Oxford: Academic Press; 2008. pp. 475-502.

Cimadevilla JM, Kaminsky Y, Fenton A, Bures J. Passive and active place avoidance as a tool of spatial memory research in rats. J Neurosci Methods. 2000;102(2):155-164.

DOI: 10.1016/s0165-0270(00)00288-0.

Cohen SJ, Munchow AH, Rios LM, Zhang G, Asgeirsdóttir HN, Stackman RW Jr. The rodent hippocampus is essential for nonspatial object memory. Curr Biol. 2013;23(17):1685-1690.

DOI: 10.1016/j.cub.2013.07.002.

Uddin MS, Al Mamun A, Hossain MS, Ashaduzzaman M, Noor MAA, Hossain MS, et al. Neuroprotective effect of Phyllanthus acidus L. on learning and memory impairment in scopolamine-induced animal model of dementia and oxidative stress: natural wonder for regulating the development and progression of Alzheimer’s disease. Adv Alzheimer's Dis. 2016;5(2):53-72.

DOI: 10.4236/aad.2016.52005.

Haider S, Tabassum S, Perveen T. Scopolamine-induced greater alterations in neurochemical profile and increased oxidative stress demonstrated a better model of dementia: a comparative study. Brain Res Bull. 2016;127:234-247.

DOI: 10.1016/j.brainresbull.2016.10.002.

Onor ML, Trevisiol M, Aguglia E. Rivastigmine in the treatment of Alzheimer’s disease: an update. Clin Interv Aging. 2007;2(1):17-32.

DOI: 10.2147/ciia.2007.2.1.17.

Piyachaturawat P, Glinsukon T, Toskulkao C. Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol Lett. 1983;16(3-4):351-359.

DOI: 10.1016/0378-4274(83)90198-4.

Gulcin I, Kaya R, Goren AC, Akincioglu H, Topal M, Bingol Z, et al. Anticholinergic, antidiabetic and antioxidant activities of cinnamon (Cinnamomum verum) bark extracts: polyphenol contents analysis by LC-MS/MS. Int J Food Prop. 2019;22(1):1511-1526.

DOI: 10.1080/10942912.2019.1656232.

Abeysekera W, Premakumara G, Ratnasooriya W. In vitro antioxidant properties of leaf and bark extracts of ceylon cinnamon (Cinnamomum zeylanicum Blume). Trop Agric Res. 2013;24(2):128-138.

Chheng C, Waiwut P, Plekratoke K, Chulikhit Y, Daodee S, Monthakantirat O, et al. Multitarget activities of kleeb bua Daeng, a thai traditional herbal formula, against Alzheimer's disease. Pharmaceuticals (Basel). 2020;13(5):79-93.

DOI: 10.3390/ph13050079.

Premakumara S, Abeysekera WPKM, Ratnasooriya WD. Antiamylase, anticholinesterases, antiglycation, and glycation reversing potential of bark and leaf of ceylon cinnamon (Cinnamomum zeylanicum Blume) in vitro. Evid Based Complement Alternat Med. 2017;2017:5076029,1-13.

DOI: 10.1155/2017/5076029.

Laha S, Sarkar D. Screening of inhibitory effects on acetylcholinesterase and butyrylcholinesterase enzymes by some indian medicinal plant’s extracts. Indian Res J Genet Biotech. 2014;6(2):406-411.

Mustafa HN. Neuro-amelioration of cinnamaldehyde in aluminum-induced Alzheimer’s disease rat model. J Histotechnol. 2020;43(1):11-20.

DOI: 10.1080/01478885.2019.1652994.

Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, et al. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci. 2009;29(46):14484-14495.

DOI: 10.1523/JNEUROSCI.1768-09.2009.

Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech. 2016;9(10):1079-1087.

DOI: 10.1242/dmm.026120.

Barbee RW, Turner PV. Incorporating laboratory animal science into responsible biomedical research. ILAR J. 2019;60(1):9-16.

DOI: 10.1093/ilar/ilz017.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.