Synthesis and cytotoxic evaluation of some novel 3-[2-(2-phenyl-thiazol-4-yl)-ethyl]-3H-pyrido[2,3-d]pyrimidin-4-one derivatives

Marzieh Rahmani Khajouei , Ghadamali Khodarahmi , Aram Ghaderi

Abstract


Background and purpose: Pyridopyrimidine and its derivatives have a variety of chemical and biological significances. Thiazole-containing compounds have also been reported to have a wide range of biological activities. Due to the valuable cytotoxic effects of both thiazole and pyridopyrimidinone derivatives, a series of pyridopyrimidinone-thiazole hybrids were synthesized in the present study.

Experimental approach: Briefly, different acyl chlorides were reacted with 2-amino nicotinic acid followed by anhydride acetic to give the corresponding pyridobenzoxazinones. The aminothiazole derivative G was also prepared via a multistep procedure and incorporated into the benzoxazinones to furnish the target pyridopyrimidinone, K1-K5. Furthermore, the cytotoxic activity of the final compounds was determined against MCF-7 and HeLa cell lines using MTT assay.

Findings/Results: The results indicated that aromatic substitution on C2 of pyridopyrimidine nucleus was in favor of cytotoxic activity on both cell lines, of which, compound K5 bearing a chlorophenyl group showed the highest cytotoxicity.

Conclusion and implications: The results of the present study are valuable in terms of synthesis of hybrid molecules and also cytotoxic evaluations which can be useful for future investigations about the design of novel pyridopyrimidinone-thiazole hybrids possessing better cytotoxic activities.


Keywords


Cytotoxicity; Pyridopyrimidine; Thiazole.

References


Kanth SR, Reddy GV, Kishore KH, Rao PS, Narsaiah B, Murthy US. Convenient synthesis of novel 4-substitutedamino-5-trifluoromethyl-2,7-disubstituted pyrido[2,3-d]pyrimidines and their antibacterial activity. Eur J Med Chem. 2006;41(8):1011-1016.

DOI: 10.1016/j.ejmech.2006.03.028.

Dinakaran S, Bomma V, Srinivasan KK. Fused pyrimidines: the heterocycle of diverse biological and pharmacological significance. Der Pharma Chem. 2012;4(1):255-265.

Deyanov AB, Niyazov RK, Nazmetdivov FY, Syropyatov BY, Kolla VE, Konshin ME. Synthesis and biological activity of amides and nitriles of 2-arylami-no-5-carboxy(carbethoxy)-6-methylnicotinic acids and 1-aryl-6-carbethoxy-7-methyl-4-oxo-1,4-dihydro-pyri-do[2,3-d]pyrimidines. Pharm Chem J. 1991;25:248-250.

DOI: 10.1007/BF00772106.

Cordeu L, Cubedo E, Bandres E, Rebollo A, Saenz X, Chozas H, et al. Biological profile of new apoptotic agents based on 2,4-pyrido[2,3-d]pyrimidine derivatives. Bioorg Med Chem. 2007;15(4):1659-1669.

DOI: 10.1016/j.bmc.2006.12.010.

Font M, Gonzalez A, Palop JA, Sanmartin C. New insights into the structural requirements for pro-apoptotic agents based on 2,4-diaminoquinazoline, 2,4-diaminopyrido[2,3-d]pyrimidine and 2,4-diaminopyrimidine derivatives. Eur J Med Chem. 2011;46(9):3887-3899.

DOI: 10.1016/j.ejmech.2011.05.060.

Dorsey JF, Jove R, Kraker AJ, Wu J. The pyrido[2,3-d]pyrimidine derivative PD180970 inhibits p210Bcr-Abl tyrosine kinase and induces apoptosis of K562 leukemic cells. Cancer Res. 2000;60(12):3127-3131.

Thompson AM, Bridges AJ, Fry DW, Kraker AJ, Denny WA. Tyrosine kinase inhibitors 7,7-amino-4-(phenylamino)-and 7-amino-4-((phenylmethyl) amino) pyrido (4,3-d) pyrimidines: a new class of inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor. J Med Chem. 1995;38(19):3780-3788.

DOI: 10.1021/jm00019a007.

Guillem J, Raimon PB, Roger ET, Jordi T, José IB. Pyrido[2,3-d]pyrimidin-7(8H)-ones: synthesis and biomedical applications. Molecules. 2019,24(22), 4161; 1-21

DOI:10.3390/molecules24224161

Agarwal A, Ashutosh R, Goyal N, Chauhan PMS, Gupta S. Dihydropyrido[2,3-d]pyrimidines as a new class of antileishmanial agents. Bioorg Med Chem. 2005;13(24):6678-6684.

DOI: 10.1016/j.bmc.2005.07.043.

Monge A, Martinez-Merino V, Sanmartin C, Fernandez FJ, Ochoa MC, Bellver C, et al. 2-Arylamino-4-oxo-3,4-dihydropyrido[2,3-d] pyrimidines: synthèse et activité diurétique. Eur J Med Chem. 1989;24(3):209-216.

DOI: 10.1016/0223-5234(89)90001-9.

Li J, Xu Z, Tan M, Su W, Gong X. 3-(4-(Benzo[d]thiazol-2-yl)-1-phenyl-1H-pyrazol-3-yl) phenyl acetate induced Hep G2 cell apoptosis through a ROS-mediated pathway. Chem Biol Interact. 2010;183(3):341-348.

DOI: 10.1016/j.cbi.2009.12.008.

Hosseinzadeh L, Aliabadi A, Kalantari M, Mostafavi A, Rahmani Khajouei M. Synthesis and cytotoxicity evaluation of some new 6-nitro derivatives of thiazole-containing 4-(3H)-quinazolinone. Res Pharm Sci. 2016;11(3):210-218.

Luo Y, Xiao F, Qian S, Lu W, Yang B. Synthesis and in vitro cytotoxic evaluation of some thiazolylbenzimidazole derivatives. Eur J Med Chem. 2011;46(1):417-422.

DOI: 10.1016/j.ejmech.2010.11.014.

Bharti SK, Nath G, Tilak R, Singh SK. Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring. Eur J Med Chem. 2010;45(2):651-660.

DOI: 10.1016/j.ejmech.2009.11.008.

Khalil A, Berghot M, Gouda M. Synthesis and antibacterial activity of some new thiazole and thiophene derivatives. Eur J Med Chem. 2009;44(11):4434-4440.

DOI: 10.1016/j.ejmech.2009.06.002.

Cukurovali A, Yilmaz I, Gur S, Kazaz C. Synthesis, antibacterial and antifungal activity of some new thiazolylhydrazone derivatives containing 3-substituted cyclobutane ring. Eur J Med Chem. 2006;41(2):201-207.

DOI: 10.1016/j.ejmech.2005.01.013.

Puszkiel A, Noé G, Bellesoeur A, Kramkimel N, Paludetto MN, Thomas-Schoemann A, et al. Clinical pharmacokinetics and pharmacodynamics of dabrafenib. Clin Pharmacokinet. 2019;58(4):451-467.

DOI: 10.1007/s40262-018-0703-0.

Keating GM. Dasatinib: a review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs. 2017;77(1):85-96.

DOI: 10.1007/s40265-016-0677-x.

Solomon VR, Hu C, Lee H. Design and synthesis of anti-breast cancer agents from 4-piperazinyl quinoline: a hybrid pharmacophore approach. Bioorg Med Chem. 2010;18(4):1563-

DOI: 10.1016/j.bmc.2010.01.001.

Gediya LK, Njar VC. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin Drug Discov. 2009;4(11):1099-1111.

DOI: 10.1517/17460440903341705.

Palbociclib (IBRANCE). Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/palbociclib-ibrance.

Serra F, Lapidari P, Quaquarini E, Tagliaferri B, Sottotetti F, Palumbo R. Palbociclib in metastatic breast cancer: current evidence and real-life data. Drugs Context. 2019;8:212579,1-16.

DOI: 10.7573/dic.212579.

Poratti M, Marzaro G. Third-generation CDK inhibitors: a review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib. Eur J Med Chem. 2019;172:143-153.

DOI: 10.1016/j.ejmech.2019.03.064.

Hosseinzadeh L, Aliabadi A, Rahnama M, Mir Mohammad Sadeghi H, Rahmani Khajouei M. Synthesis and cytotoxic evaluation of some new 3-(2-(2-phenylthiazol-4-yl) ethyl)-quinazolin-4(3H) one derivatives with potential anticancer effects. Res Pharm Sci. 2017;12(4):290-298.

DOI: 10.4103/1735-5362.212046.

Shao X, AbdelKhalek A, Abutaleb NS, Velagapudi UK, Yoganathan S, Seleem MN, et al. Chemical space exploration around thieno[3,2-d]pyrimidin-4(3H)-one scaffold led to a novel class of highly active Clostridium difficile inhibitors. J Med Chem. 2019;62(21):9772-9791.

DOI: 10.1021/acs.jmedchem.9b01198.

Freshney RI. Culture of Animal Cells: A Manual of Basic Technique. 4rd ed. United State: Wiley-Liss press; 1994. pp. 1-5, 9-15, 181-184, 309.

Gatadi S, Gour J, Shukla M, Kaul G, Das S, Arunava D, et al. Synthesis and evaluation of new 4-oxoquinazolin-3(4H)-yl)benzoic acid and benzamide derivatives as potent antibacterial agents effective against multidrug resistant Staphylococcus aureus. Bioorg Chem. 2019;83:569-579.

DOI: 10.1016/j.bioorg.2018.11.007.

Kumpan K, Nathubhai A, Zhang C, Wood PJ, Lloyd MD. Structure-based design, synthesis and evaluation in vitro of arylnaphthyridinones, arylpyridopyrimidinones and their tetrahydro derivatives as inhibitors of the tankyrases. Bioorg Med Chem. 2015;23(13):3013-3032.

DOI: 10.1016/j.bmc.2015.05.005.

Walczyński K, Timmerman H, Zuiderveld OP, Zhang MQ, Glinka R. Histamine H1 receptor ligands: Part I. Novel thiazol-4-ylethanamine derivatives: synthesis and in vitro pharmacology. Farmaco. 1999;54(8):533-541.

DOI: 10.1016/s0014-827x(99)00060-9.

Eriks JC, Van der Goot H, Sterk GJ, Timmerman H. Histamine H2-receptor agonists. Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4-and 5-(2-aminoethyl) thiazoles. J Med Chem. 1992;35(17):3239-3246.

DOI: 10.1021/jm00095a021.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.