Design, synthesis, and evaluation of novel racecadotril-tetrazole-amino acid derivatives as new potent analgesic agents

Mehdi Asadi , Maryam Mohammadi-Khanaposhtani, Faezeh Sadat Hosseini, Mahdi Gholami, Ahmad Reza Dehpour, Massoud Amanlou

Abstract


Background and purpose: Although pain is one of the most common symptoms of diseases, it is often mismanaged due to limited access to painkillers and ineffectiveness, unacceptable side effects, or the possibility of abuse. However, an alternative approach to existing analgesics is to indirectly increase endogenous pain relief pathways by neprilysin (an enkephalinase) inhibitors. This enzyme breaks down and inactivates enkephalin, dynorphin, endorphins, and their derivatives.

Experimental approach: In this project, a new series of racecadotril-tetrazole-amino acid derivatives 15a-l was synthesized and characterized on the basis of IR, 1H and 13C NMR, mass spectrometry, and elemental analysis. The antinociceptive activity of synthesized compounds was assessed by a hot plate, tail-flick, and formalin assays in mice. Docking was used to identify the possible interactions between neprilysin and synthesized compounds.

Findings/Results: Most of the synthesized compounds showed moderate to good analgesic effects in hot plat and tail-flick test in comparison to morphine and racecadotril. Compounds 15l and 15j were the most potent compounds. The synergistic analgesic effect of compounds 15l and 15j with morphine and the antagonistic effect of naloxone on the activity of these compounds confirm that the analgesic effect of compounds 15l and 15j could be mediated through the opioidergic system. The negative and high binding energy of docking simulation of the most potent compounds in the catalytic site of neprilysin was also in good agreement with the inhibitory activity of test compounds.

Conclusion and implications: Racecadotril-tetrazole-amino acid derivatives, as potential antinociceptive agents, demonstrated moderate to good antinociceptive activities comparable with morphine and higher than racecadotril.


Keywords


Keywords: Antinociceptive activity; Enkephalinase; Molecular docking simulation; Racecadotril; Tetrazole; Thiorphan.

Full Text:

PDF

References


Bovill JG. Mechanisms of actions of opioids and non-steroidal anti-inflammatory drugs. Eur J Anaesthesiol Suppl. 1997;15:9-15.

DOI: 10.1097/00003643-199705001-00003.

Holdgate A, Pollock T. Systematic review of the relative efficacy of non-steroidal anti-inflammatory drugs and opioids in the treatment of acute renal colic. BMJ. 2004;328(7453):1401.

DOI: 10.1136/bmj.38119.581991.55.

Liles JH, Flecknell PA. The use of non-steroidal anti-inflammatory drugs for the relief of pain in laboratory rodents and rabbits. Lab Anim. 1992;26(4):241-255.

DOI: 10.1258/002367792780745706.

Bagheri SM, Dashti RM, Morshedi A. Antinociceptive effect of Ferula assafoetida oleo-gum-resin in mice. Res Pharm Sci. 2014;9(3):207-212.

Sethi N, Bhatti R, Ishar MPS. In vivo pharmacological profile of substituted (3-pyridyl)-2-phenylisoxazolidine analogues of nicotine as novel antinociceptives. Res Pharm Sci. 2014;9(1):59-67.

Benyamin R, Trescot AM, Datta S, Ricardo Buenaventura M, Rajive Adlaka M, Nalini Sehgal M, et al. Opioid complications and side effects. Pain Physician. 2008;11(2 Suppl):S105-S120.

Shah S, Mehta V. Controversies and advances in non-steroidal anti-inflammatory drug (NSAID) analgesia in chronic pain management. Postgrad Med J. 2012;88(1036):73-78.

DOI: 10.1136/postgradmedj-2011-130291.

Szymaszkiewicz A, Storr M, Fichna J, Zielinska M. Enkephalinase inhibitors, potential therapeutics for the future treatment of diarrhea predominant functional gastrointestinal disorders. Neurogastroenterol Motil. 2019;31(4):e13526.

DOI: 10.1111/nmo.13526.

Noble F, Roques BP. Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin Ther Targets. 2007;11(2):145-159.

DOI: 10.1517/14728222.11.2.145.

Roques BP, Fournie-Zaluski MC, Wurm M. Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat Rev Drug Discov. 2012;11(4):292-310.

DOI: 10.1038/nrd3673.

Hajhashemi V, Dehdashti K. Antinociceptive effect of clavulanic acid and its preventive activity against development of morphine tolerance and dependence in animal models. Res Pharm Sci. 2014;9(5):315-321.

Salazar-Lindo E, Santisteban-Ponce J, Chea-Woo E, Gutierrez M. Racecadotril in the treatment of acute watery diarrhea in children. N Engl J Med. 2000;343(7):463-467.

DOI: 10.1056/NEJM200008173430703.

Eberlin M, Muck T, Michel MC. A comprehensive review of the pharmacodynamics, pharmacokinetics, and clinical effects of the neutral endopeptidase inhibitor racecadotril. Front Pharmacol. 2012;3:93-108.

DOI: 10.3389/fphar.2012.00093.

Roques BP, Fournie-Zaluski MC, Soroca E, Lecomte JM, Malfroy B, Llorens C, et al. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature. 1980;288(5788):286-288.

DOI: 10.1038/288286a0.

Yamamori Y, Saito Y, Kaneko M, Kirihara Y, Sakura S, Kosaka Y. Antinociceptive effects of ONO-9902, an enkephalinase inhibitor, after visceral stress condition in rats. Can J Anaesth. 1996;43(11):1175-1179.

DOI: 10.1007/BF03011848.

Fournié-Zaluski MC, Chaillet P, Bouboutou R, Coulaud A, Cherot P, Waksman G, et al. Analgesic effects of kelatorphan, a new highly potent inhibitor of multiple enkephalin degrading enzymes. Eur J Pharmacol. 1984;102(3-4):525-528.

DOI: 10.1016/0014-2999(84)90575-2.

Lambert DM, Mergen F, Poupaert JH, Dumont P. Analgesic potency of S-acetylthiorphan after intravenous administration to mice. Eur J Pharmacol. 1993;243(2):129-134.

DOI: 10.1016/0014-2999(93)90371-n.

Ballatore C, Huryn DM, Smith 3rd AB. Carboxylic acid (bio)isosteres in drug design. ChemMedChem. 2013;8(3):385-395.

DOI: 10.1002/cmdc.201200585.

Florentino IF, Galdino PM, De Oliveira LP, Silva DP, Pazini F, Vanderlinde FA, et al. Involvement of the NO/cGMP/KATP pathway in the antinociceptive effect of the new pyrazole 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-021). Nitric Oxide. 2015;47:17-24.

DOI: 10.1016/j.niox.2015.02.146.

Yu HL, Zhang F, Li YJ, Gong GH, Quan ZS. Anti-inflammatory and antinociceptive effects of 6-(4-chlorophenoxy)-tetrazolo[5,1-a]phthalazine in mice. Pharmacol Rep. 2012;64(5):1155-1165.

DOI: 10.1016/s1734-1140(12)70912-x.

Asadi P, Khodarahmi G, Jahanian-Najafabadi A, Saghaie L, Hassanzadeh F. Biologically active heterocyclic hybrids based on quinazolinone, benzofuran and imidazolium moieties: synthesis, characterization, cytotoxic and antibacterial evaluation. Chem Biodivers. 2017;14(4):e1600411.

DOI: 10.1002/cbdv.201600411.

Nalivaeva NN, Zhuravin IA, Turner AJ. Neprilysin expression and functions in development, aging and disease. Mech Ageing Dev. 2020;192:111363.

DOI: 10.1016/j.mad.2020.111363.

Ramirez-Sanchez M, Prieto I, Segarra AB, Martinez-Canamero M, Banegas I, de Gasparo M. Enkephalinase regulation. Vitam Horm. 2019;111:105-129.

DOI: 10.1016/bs.vh.2019.05.007.

Lu D, Vince R. Discovery of potent HIV-1 protease inhibitors incorporating sulfoximine functionality. Bioorg Med Chem Lett. 2007;17(20):5614-5619.

DOI: 10.1016/j.bmcl.2007.07.095.

Rüger N, Roatsch M, Emmrich T, Franz H, Schüle R, Jung M, et al. Tetrazolylhydrazides as selective fragment-like inhibitors of the JumonjiC-domain-containing histone demethylase KDM4A. ChemMedChem. 2015;10(11):1875-1883.

DOI: 10.1002/cmdc.201500335.

Senokuchi K, Nakai H, Nagao Y, Sakai Y, Katsube N, Kawamura M. New orally active enkephalinase inhibitors: their synthesis, biological activity, and analgesic properties. Bioorg Med Chem. 1998;6(4):441-463.

DOI: 10.1016/s0968-0896(97)10048-7.

Bloom AS, Dewey WL, Harris LS, Brosius KK. The correlation between antinociceptive activity of narcotics and their antagonists as measured in the mouse tail-flick test and increased synthesis of brain catecholamines. J Pharmacol Exp Ther. 1976;198(1):33-41.

Hunskaar S, Fasmer OB, Hole K. Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Methods. 1985;14(1):69-76.

DOI: 10.1016/0165-0270(85)90116-5.

Oefner C, Roques BP, Fournie-Zaluski MC, Dale GE. Structural analysis of neprilysin with various specific and potent inhibitors. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 2):392-396.

DOI: 10.1107/S0907444903027410.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791.

DOI: 10.1002/jcc.21256.

Hosseini FS, Amanlou M. Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: virtual screening, molecular docking, and molecular dynamics simulation study. Life Sci. 2020;258:118205.

Life Sci. 2020;258:118205.

DOI: 10.1016/j.lfs.2020.118205.

Khodarahmi G, Asadi P, Farrokhpour H, Hassanzadeh F, Dinari M. Design of novel potential aromatase inhibitors via hybrid pharmacophore approach: docking improvement using the QM/MM method. RSC Adv. 2015;5(71):58055-58064.

DOI: 10.1039/C5RA10097F.

Santos-Martins D, Forli S, Ramos MJ, Olson AJ. AutoDock4Zn: an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model. 2014;54(8):2371-2379.

DOI: 10.1021/ci500209e.

Yuan S, Chan HS, Hu Z. Using PyMOL as a platform for computational drug design. WIREs Comput Mol Sci. 2017;7(2):e1298.

DOI: 10.1002/wcms.1298.

Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778-2786.

DOI: 10.1021/ci200227u.

Andujar-Sanchez M, Camara-Artigas A, Jara-Perez V. A calorimetric study of the binding of lisinopril, enalaprilat and captopril to angiotensin-converting enzyme. Biophys Chem. 2004;111(2):183-189.

DOI: 10.1016/j.bpc.2004.05.011.

Xu Y, Huang J, Liu F, Gao S, Guo Q. Quantitative analysis of racecadotril metabolite in human plasma using a liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;852(1-2):101-107.

DOI: 10.1016/j.jchromb.2006.12.041.

Halpern LM, Dong WK. D-phenylalanine: a putative enkephalinase inhibitor studied in a primate acute pain model. Pain. 1986;24(2):223-237.

DOI: 10.1016/0304-3959(86)90045-X.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.