Effect of vorinostat on INK4 family and HDACs 1, 2, and 3 in pancreatic cancer and hepatocellular carcinoma

Masumeh Sanaei , Fraidoon Kavoosi

Abstract


Background and purpose: In mammalian cells, several distinct surveillance systems, named cell cycle checkpoints, can interrupt normal cell-cycle progression. The cyclin-dependent kinases are negatively regulated by proteins of cyclin-dependent kinases inhibitors comprising INK4 and Cip/Kip families. Histone deacetylation induced by histone deacetylases (HDACs) inactivates the INK4 and Cip/Kip families lead to cancer induction. HDAC inhibitors (HDACIs) have been indicated to be potent inducers of differentiation, growth arrest, and apoptotic induction. Vorinostat (suberoylanilide hydroxamic acid, SAHA), as an HDACI, is reported to be useful in various cancers. Previously, we reported the effect of trichostatin A on hepatocellular carcinoma and also vorinostat on colon cancer cell lines. The current study was aimed to investigate the effect of vorinostat on p16INK4a, p14ARF, p15INK4b, and class I HDACs 1, 2, and 3 gene expression, cell growth inhibition, and apoptosis induction in pancreatic cancer AsPC-1 and hepatocellular carcinoma LCL-PI 11 cell lines.

Experimental approach: The AsPC-1 and LCL-PI 11 cell lines were cultured and treated with vorinostat. To determine, viability, apoptosis, and the relative expression level of p16INK4a, p14ARF, p15INK4b, class I HDACs 1, 2, and 3 genes, MTT assay, cell apoptosis assay, and RT-qPCR were performed, respectively.

Findings/Results: Vorinostat significantly inhibited cell growth, induced apoptosis, increased p16INK4a, p14ARF, p15INK4b, and decreased class I HDACs 1, 2, and 3 gene expression.

Conclusion and implications: Vorinostat can reactivate the INK4 family through inhibition of class I HDACs 1, 2, and 3 genes activity.

 

 


Keywords


Cyclin-dependent kinase inhibitors; Neoplasms; Vorinostat.

Full Text:

PDF

References


Dastjerdi MN, Babazadeh Z, Rabbani M, Gharagozloo M, Esmaeili A, Narimani M. Effects of disulfiram on apoptosis in PANC-1 human pancreatic cancer cell line. Res Pharm Sci. 2014;9(4):287-294.

Balogh J, Victor III D, Asham EH, Burroughs SG, Boktour M, Saharia A, et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;3:41-53.

DOI: 10.2147/JHC.S61146.

Naghitorabi M, Mohammadi Asl J, Mir Mohammad Sadeghi H, Rabbani M, Jafarian-Dehkordi A, Haghjooye Javanmard S. Quantitative evaluation of DNMT3B promoter methylation in breast cancer patients using differential high resolution melting analysis. Res Pharm Sci. 2013;8(3):167-175.

Liu K-Y, Wang L-T, Hsu S-H. Modification of epigenetic histone acetylation in hepatocellular carcinoma. Cancers. 2018;10(1):1-13.

DOI: 10.3390/cancers10010008.

Wang C, Fu M, Mani S, Wadler S, Senderowicz AM, Pestell RG. Histone acetylation and the cell-cycle in cancer. Front Biosci. 2001;6:610-629.

DOI: 10.2741/1wang1.

Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122-128.

DOI: 10.1186/gb4184.

Thullberg M, Bartkova J, Khan S, Hansen K, Rönnstrand L, Lukas J, et al. Distinct versus redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors. FEBS Lett. 2000;470(2):161-166.

DOI: 10.1016/s0014-5793(00)01307-7.

Shin JY, Kim HS, Park J, Park JB, Lee JY. Mechanism for inactivation of the KIP family cyclin-dependent kinase inhibitor genes in gastric cancer cells. Cancer Res. 2000;60(2):262-265.

Fukai K, Yokosuka O, Imazeki F, Tada M, Mikata R, Miyazaki M, et al. Methylation status of p14ARF, p15INK4b, and p16INK4a genes in human hepatocellular carcinoma. Liver Int. 2005;25(6):1209-1216.

DOI: 10.1111/j.1478-3231.2005.01162.x.

Kusy S, Larsen CJ, Roche J. p14ARF, p15INK4b and p16INK4a Methylation status in chronic myelogenous leukemia. Leuk Lymphoma. 2004;45(10):1989-1994.

DOI: 10.1080/10428190410001714025.

Glozak M, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26(37):5420-5432.

DOI: 10.1038/sj.onc.1210610.

Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277(1):8-21.

DOI: 10.1016/j.canlet.2008.08.016.

Weichert W, Röske A, Gekeler V, Beckers T, Stephan C, Jung K, et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer. 2008;98(3):604-610.

DOI: 10.1038/sj.bjc.6604199.

Fritzsche FR, Weichert W, Röske A, Gekeler V, Beckers T, Stephan C, et al. Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer. 2008;8:381-388.

DOI: 10.1186/1471-2407-8-381.

Nakagawa M, Oda Y, Eguchi T, Aishima SI, Yao T, Hosoi F, et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep. 2007;18(4):769-774.

Kim JK, Noh JH, Eun JW, Jung KH, Bae HJ, Shen Q, et al. Targeted inactivation of HDAC2 restores p16INK4a activity and exerts antitumor effects on human gastric cancer. Mol Cancer Res. 2013;11(1):62-73.

DOI: 10.1158/1541-7786.MCR-12-0332.

Stojanovic N, Hassan Z, Wirth M, Wenzel P, Beyer M, Schäfer C, et al. HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene. 2017;36(13):1804-1815.

DOI: 10.1038/onc.2016.344.

Zheng S, Li Q, Zhang Y, Balluff Z, Pan YX. Histone deacetylase 3 (HDAC3) participates in the transcriptional repression of the p16(INK4a) gene in mammary gland of the female rat offspring exposed to an early-life high-fat diet. Epigenetics. 2012;7(2):183-190.

DOI: 10.4161/epi.7.2.18972.

Hitomi T, Matsuzaki Y, Yokota T, Takaoka Y, Sakai T. p15INK4b in HDAC inhibitor-induced growth arrest. FEBS Lett. 2003;554(3):347-350.

DOI: 10.1016/s0014-5793(03)01186-4.

Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92(15):1210-1216.

DOI: 10.1093/jnci/92.15.1210.

Marks PA, Xu WS. Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem. 2009;107(4):600-608.

DOI: 10.1002/jcb.22185.

Singh AK, Bishayee A, Pandey AK. Targeting histone deacetylases with natural and synthetic agents: an emerging anticancer strategy. Nutrients. 2018;10(6):731-739.

DOI: 10.3390/nu10060731.

Sanaei M, Kavoosi F, Salehi H. Genistein and trichostatin a induction of estrogen receptor alpha gene expression, apoptosis and cell growth inhibition in hepatocellular carcinoma HepG 2 cells. Asian Pac J Cancer Prev. 2017;18(12):3445-3450.

DOI: 10.22034/APJCP.2017.18.12.3445.

Sanaei M, Kavoosi F, Roustazadeh A, Golestan F. Effect of genistein in comparison with trichostatina on reactivation of DNMTs genes in hepatocellular carcinoma. J Clin Transl Hepatol. 2018;6(2):141-146.

DOI: 10.14218/JCTH.2018.00002.

Sanaei M, Kavoosi F, Mansoori O. Effect of valproic acid in comparison with vorinostat on cell growth inhibition and apoptosis induction in the human colon cancer SW48 cells in vitro. Exp Oncol. 2018;40(2):95-100.

Sanaei M, Kavoosi F. Effects of 5-aza-2'-deoxycytidine and valproic acid on epigenetic-modifying DNMT1 gene expression, apoptosis induction and cell viability in hepatocellular carcinoma WCH-17 cell line. Iran J Ped Hematol Oncol. 2019;9(2):83-90.

DOI: 10.18502/ijpho.v9i2.607.

Sanaei M, Kavoosi F. Effect of DNA methyl transferase in comparison to and in combination with histone deacetylase inhibitors on hepatocellular carcinoma HepG2 cell line. Asian Pac J Cancer Prev. 2019;20(4):1119-1125.

DOI: 10.31557/APJCP.2019.20.4.1119.

Sanaei M, Kavoosi F. Effect of curcumin and trichostatin A on the expression of DNA methyltransfrase 1 in hepatocellular carcinoma cell line Hepa 1-6. Iran J Ped Hematol Oncol. 2018;8(4):193-201.

Sanaei M, Kavoosi F. Effect of zebularine in comparison to and in combination with trichostatin A on CIP/KIP family (p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2), DNMTs (DNMT1, DNMT3a, and DNMT3b), class I HDACs (HDACs 1, 2, 3) and class II HDACs (HDACs 4, 5, 6) gene expression, cell growth inhibition and apoptosis induction in colon cancer LS 174T cell line. Asian Pac J Cancer Prev. 2020;21(7):2131-2139.

DOI: 10.31557/APJCP.2020.21.7.2131.

Sakuma K, Chong JM, Sudo M, Ushiku T, Inoue Y, Shibahara J, et al. High-density methylation of p14ARF and p16INK4A in epstein-barr virus-associated gastric carcinoma. Int J Cancer. 2004;112(2):273-278.

DOI: 10.1002/ijc.20420.

Li G, Ji Y, Liu C, Li JQ, Zhou YQ. Reduced levels of p15INK4b, p16INK4a, p21cip1 and p27kip1 in pancreatic carcinoma. Mol Med Rep. 2012;5(4):1106-1110.

DOI: 10.3892/mmr.2012.771.

Saegusa M, Machida BD, Okayasu I. Possible associations among expression of p14(ARF), p16(INK4a), p21(WAF1/CIP1), p27(KIP1), and p53 accumulation and the balance of apoptosis and cell proliferation in ovarian carcinomas. Cancer. 2001;92(5):1177-1189.

DOI: 10.1002/1097-0142(20010901)92:5<1177::aid-cncr1436>3.0.co;2-5.

Jin KL, Pak JH, Park JY, Choi WH, Lee JY, Kim JH, et al. Expression profile of histone deacetylases 1, 2 and 3 in ovarian cancer tissues. J Gynecol Oncol. 2008;19(3):185-190.

DOI: 10.3802/jgo.2008.19.3.185.

Sanaei M, Kavoosi F. Effect of 5-aza-2'-deoxycytidine in comparison to valproic acid and trichostatin A on histone deacetylase 1, DNA methyltransferase 1, and CIP/KIP family (p21, p27, and p57) genes expression, cell growth inhibition, and apoptosis induction in colon cancer SW480 cell line. Adv Biomed Res. 2019;8:52-59.

DOI: 10.4103/abr.abr_91_19.

Dominguez G, Silva J, Garcia JM, Silva JM, Rodriguez R, Muñoz C, et al. Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors. Mutat Res. 2003;530(1-2):9-17.

DOI: 10.1016/s0027-5107(03)00133-7.

Richon VM, Zhou X, Rifkind RA, Marks PA. Histone deacetylase inhibitors: development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cells Mol Dis. 2001;27(1):260-264.

DOI: 10.1006/bcmd.2000.0376.

Venturelli S, Armeanu S, Pathil A, Hsieh CJ, Weiss TS, Vonthein R, et al. Epigenetic combination therapy as a tumor-selective treatment approach for hepatocellular carcinoma. Cancer. 2007;109(10):2132-2141.

DOI: 10.1002/cncr.22652.

Zhou H, Cai Y, Liu D, Li M, Sha Y, Zhang W, et al. Pharmacological or transcriptional inhibition of both HDAC1 and 2 leads to cell cycle blockage and apoptosis via p21Waf1/Cip1 and p19INK4d upregulation in hepatocellular carcinoma. Cell Prolif. 2018;51(3):e12447,1-14.

DOI: 10.1111/cpr.12447.

Kumagai T, Wakimoto N, Yin D, Gery S, Kawamata N, Takai N, et al. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer. 2007;121(3):656-665.

DOI: 10.1002/ijc.22558.

Ramalingam SS, Maitland ML, Frankel P, Argiris AE, Koczywas M, Gitlitz B, et al. Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(1):56-62.

DOI: 10.1200/JCO.2009.24.9094.

Hrzenjak A, Moinfar F, Kremser ML, Strohmeier B, Petru E, Zatloukal K, et al. Histone deacetylase inhibitor vorinostat suppresses the growth of uterine sarcomas in vitro and in vivo. Mol Cancer. 2010;9:49-59.

DOI: 10.1186/1476-4598-9-49.

Gameiro SR, Malamas AS, Tsang KY, Ferrone S, Hodge JW. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget. 2016;7(7):7390-7402.

DOI: 10.18632/oncotarget.7180.

Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, et al. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res. 2001;7(4):971-976.

Fortson WS, Kayarthodi S, Fujimura Y, Xu H, Matthews R, Grizzle WE, et al. Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells. Int J Oncol. 2011; 39(1):111-119.

DOI: 10.3892/ijo.2011.1014.

Codd R, Braich N, Liu J, Soe CZ, Pakchung AA. Zn (II)-dependent histone deacetylase inhibitors: suberoylanilide hydroxamic acid and trichostatin A. Int J Biochem Cell Biol. 2009;41(4):736-739.

DOI: 10.1016/j.biocel.2008.05.026.

Mariadason JM. HDACs and HDAC inhibitors in colon cancer. Epigenetics. 2008;3(1):28-37.

DOI: 10.4161/epi.3.1.5736.

Fang JY. Histone deacetylase inhibitors, anticancerous mechanism and therapy for gastrointestinal cancers. J Gastroenterol Hepatol. 2005;20(7):988-994.

DOI: 10.1111/j.1440-1746.2005.03807.x.

Marek L, Hamacher A, Hansen FK, Kuna K, Gohlke H, Kassack MU, et al. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J Med Chem. 2013;56(2):427-436.

DOI: 10.1021/jm301254q.

Tu Y, Hershman DL, Bhalla K, Fiskus W, Pellegrino CM, Andreopoulou E, et al. A phase I-II study of the histone deacetylase inhibitor vorinostat plus sequential weekly paclitaxel and doxorubicin-cyclophosphamide in locally advanced breast cancer. Breast Cancer Res Treat. 2014;146(1):145-152.

DOI: 10.1007/s10549-014-3008-5.

Dokmanovic M, Perez G, Xu W, Ngo L, Clarke C, Parmigiani RB, et al. Histone deacetylase inhibitors selectively suppress expression of HDAC7. Mol Cancer Ther. 2007;6(9):2525-2534.

DOI: 10.1158/1535-7163.MCT-07-0251.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.