Effects of intrathecal and intracerebroventricular microinjection of kaempferol on pain: possible mechanisms of action

Sajjad Jabbari , Maryam Bananej, Mohammad Zarei , Alireza Komaki, Ramin Hajikhani

Abstract


Background and purpose: Kaempferol (KM), a flavonoid, has an anti-inflammatory and anticancer effect and prevents many metabolic diseases. Nonetheless, very few studies have been done on the antinociceptive effects of KM. This research aimed at assessing the involvement of opioids, gamma-aminobutyric acid (GABA) receptors, and inflammatory mediators in the antinociceptive effects of KM in male Wistar rats.

Experimental approach: The intracerebroventricular and/or intrathecal administration of the compounds was done for examining their central impacts on the thermal and chemical pain by the tail-flick and formalin paw tests. For assessing the role of opioid and GABA receptors in the possible antinociceptive effects of KM, several antagonists were used. Also, a rotarod test was carried out for assessing motor performance.

Findings/Results: The intracerebroventricular and/or intrathecal microinjections of KM (40 mg/rat) had partially antinociceptive effects in the tail-flick test in rats (P < 0.05). In the formalin paw model, the intrathecal microinjection of KM had antinociceptive effects in phase 1 (20 and 40 mg/rat; P < 0.05 and P < 0.01, respectively) and phase 2 (20 and 40 mg/rat; P < 0.01 and P < 0.001, respectively). Using naloxonazine and/or bicuculline approved the involvement of opioid and GABA receptorsin the central antinociceptive effects of KM, respectively. Moreover, KM reduced the expression levels of caspase 6, interleukin-1β, tumor necrosis factor-α, and interleukin-6. The antinociceptive effects of KM were not linked to variations in the locomotor activity.

Conclusion and implications: It can be concluded that KM has remarkable antinociceptive effects at a spinal level, which is associated with the presence of the inflammatory state. These impacts were undetectable following injections in the lateral ventricle. The possible mechanisms of KM antinociception are possibly linked to various modulatory pathways, including opioid and GABA receptors.

Keywords


Antinociception; Kaempferol; Pain; Spinal cord; Supraspinal.

Full Text:

PDF

References


Craig KD, Holmes C, Hudspith M, Moor G, Moosa-Mitha M, Varcoe C, et al. Pain in persons who are marginalized by social conditions. Pain. 2020;161(2):261-265.

DOI:10.1097/j.pain.0000000000001719.

Losin EAR, Woo CW, Medina NA, Andrews-Hanna JR, Eisenbarth H, Wager TD. Neural and sociocultural mediators of ethnic differences in pain. Nat Hum Behav. 2020:4(5):517-530.

DOI:10.1038/s41562-020-0819-8.

Zarei M, Mohammadi S, Komaki A. Antinociceptive activity of Inula britannica L. and patuletin: in vivo and possible mechanisms studies. J Ethnopharmacol. 2018;219:351-358.

DOI:10.1016/j.jep.2018.03.021.

Fallahzadeh A, Mohammadi S. Assessment of the antinociceptive, anti-inflammatory, and acute toxicity effects of solanum dulcamara essential oil in male mice. J Babol Univ Med Sci. 2020;22(1):162-168.

DOI:10.22102/22.3.74.

Mitra NK, Xuan KY, Teo CC, Xian-Zhuang N, Singh A, Chellian J. Evaluation of neuroprotective effects of alpha-tocopherol in cuprizone-induced demyelination model of multiple sclerosis. Res Pharm Sci. 2020;15(6):602-611.

DOI:10.4103/1735-5362.301345.

Abbas MM, Al-Rawi N, Abbas MA, Al-Khateeb I. Naringenin potentiated β-sitosterol healing effect on the scratch wound assay. Res Pharm Sci. 2019;14(6):566-573.

DOI:10.4103/1735-5362.272565.

Abbasi A, Hajialyani M, Hosseinzadeh L, Jalilian F, Yaghmaei P, Navid SJ, et al. Evaluation of the cytotoxic and apoptogenic effects of cinnamaldehyde on U87MG cells alone and in combination with doxorubicin. Res Pharm Sci. 2020;15(1):26-35.

DOI: 10.4103/1735-5362.278712.

Lin C, Wu F, Zheng T, Wang X, Chen Y, Wu X. Kaempferol attenuates retinal ganglion cell death by suppressing NLRP1/NLRP3 inflammasomes and caspase-8 via JNK and NF-κB pathways in acute glaucoma. Eye (Lond). 2019;33(5):777-784.

DOI:10.1038/s41433-018-0318-6.

Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res. 2019;33(2):263-275.

DOI:10.1002/ptr.6227.

Zarei M, Mohammadi S, Jabbari S, Shahidi S. Intracerebroventricular microinjection of kaempferol on memory retention of passive avoidance learning in rats: involvement of cholinergic mechanism (s). Int J Neurosci. 2019;129(12):1203-1212.

DOI:10.1080/00207454.2019.1653867.

Bian Y, Liu P, Zhong J, Hu Y, Fan Y, Zhuang S, et al. Kaempferol inhibits multiple pathways involved in the secretion of inflammatory mediators from LPS-induced rat intestinal microvascular endothelial cells. Mol Med Rep. 2019;19(3):1958-1964.

DOI:10.3892/mmr.2018.9777.

Qian J, Chen X, Chen X, Sun C, Jiang Y, Qian Y, et al. Kaempferol reduces K63-linked polyubiquitination to inhibit nuclear factor-κB and inflammatory responses in acute lung injury in mice. Toxicol Lett. 2019;306:53-60.

DOI:10.1016/j.toxlet.2019.02.005.

Abo-Salem OM. Kaempferol attenuates the development of diabetic neuropathic pain in mice: possible anti-inflammatory and anti-oxidant mechanisms. Maced J Med Sci. 2014;7(3):424-430.

DOI: 10.3889/oamjms.2014.073.

Kim SH, Park JG, Sung GH, Yang S, Yang WS, Kim E, et al. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain. Mol Nutr Food Res. 2015;59(7):1400-1405.

DOI. 10.1002/mnfr.201400820.

De Melo GO, Malvar DdC, Vanderlinde FA, Rocha FF, Pires PA, Costa EA, et al. Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum. J Ethnopharmacol. 2009;124(2):228-232.

DOI:10.1016/j.jep.2009.04.024.

Sun J, Chen SR, Pan HL. μ-Opioid receptors in primary sensory neurons are involved in supraspinal opioid analgesia. Brain Res. 2020;1729:146623.

DOI:10.1016/j.brainres.2019.146623,1-9.

Norris C, Szkudlarek HJ, Pereira B, Rushlow W, Laviolette SR. The bivalent rewarding and aversive properties of Δ 9-tetrahydrocannabinol are mediated through dissociable opioid receptor substrates and neuronal modulation mechanisms in distinct striatal sub-regions. Sci Rep. 2019;9(1):9760,1-14.

DOI:10.1038/s41598-019-46215-7.

Jiang JH, Peng YL, Zhang PJ, Xue HX, He Z, Liang XY, et al. The ventromedial hypothalamic nucleus plays an important role in anxiolytic-like effect of neuropeptide S. Neuropeptides. 2018;67:36-44.

DOI: 10.1016/j.npep.2017.11.004.

Takechi K, Fujiwara A, Watanabe Y, Kamei C. Participation of GABA-ergic system in epileptogenic activity induced by teicoplanin in mice. Epilepsy Res. 2009;84(2-3):127-134.

DOI:10.1016/j.eplepsyres.2009.01.006.

Ahmadimoghaddam D, Sadeghian R, Ranjbar A, Izadidastenaei Z, Mohammadi S. Antinociceptive activity of Cnicus benedictus L. leaf extract: a mechanistic evaluation. Res Pharm Sci. 2020;15(5):463-472.

DOI:10.4103/1735-5362.297849.

Mahmoodi M, Mohammadi S, Enayati F. Evaluation of the antinociceptive effect of hydroalcoholic extract of Potentilla reptans L. in the adult male rat. J Shahid Sadoughi Univ Med Sci. 2016;24(3):201-210.

Srisai D, Yin TC, Lee AA, Rouault AA, Pearson NA, Grobe JL, et al. MRAP2 regulates ghrelin receptor signaling and hunger sensing. Nat Commun. 2017;8(1):713-722.

DOI:10.1038/s41467-017-00747-6.

Shirzad S, Neamati A, Vafaee F, Ghazavi H. Bufo viridis secretions improve anxiety and depression-like behavior following intracerebroventricular injection of amyloid β. Res Pharm Sci. 2020;15(6):571-582.

DOI:10.4103/1735-5362.301342.

Wei H, Yao X, Yang L, Wang S, Guo F, Zhou H, et al. Glycogen synthase kinase-3β is involved in electroacupuncture pretreatment via the cannabinoid CB1 receptor in ischemic stroke. Mol Neurobiol. 2014;49(1):326-336.

DOI:10.1007/s12035-013-8524-5.

Hara K, Haranishi Y, Terada T. Intrathecally administered perampanel alleviates neuropathic and inflammatory pain in rats. Eur J Pharmacol. 2020;872:172949,1-6.

DOI:10.1016/j.ejphar.2020.172949.

Ineichen BV, Schnell L, Gullo M, Kaiser J, Schneider MP, Mosberger AC, et al. Direct, long-term intrathecal application of therapeutics to the rodent CNS. Nat Protoc. 2017;12(1):104-131.

DOI:10.1038/nprot.2016.151.

Zhang Y, Kahng MW, Elkind JA, Weir VR, Hernandez NS, Stein LM, et al. Activation of GLP-1 receptors attenuates oxycodone taking and seeking without compromising the antinociceptive effects of oxycodone in rats. Neuropsychopharmacology. 2020;45(3):451-461.

DOI:10.1038/s41386-019-0531-4.

Yin ZY, Li L, Chu SS, Sun Q, Ma ZL, Gu XP. Antinociceptive effects of dehydrocorydaline in mouse models of inflammatory pain involve the opioid receptor and inflammatory cytokines. Sci Rep. 2016;6:27129,1-9.

DOI:10.1038/srep27129.

Xu B, Zhang M, Shi X, Zhang R, Chen D, Chen Y, et al. The multifunctional peptide DN-9 produced peripherally acting antinociception in inflammatory and neuropathic pain via μ-and κ-opioid receptors. Br J Pharmacol. 2020;177(1):93-109.

DOI:10.1111/bph.14848.

Golshani Y, Mohammadi S. Evaluation of antinociceptive effect of methanolic extract of Lallemantia iberica in adult male rats. Armaghane Danesh. 2015;19(12):1058-1068.

Migita K, Nishimura A, Eto F, Koga K, Matsumoto T, Terada K, et al. Muscarinic M1 receptors stimulated by intracerebroventricular administration of McN-A-343 reduces the nerve injury-induced mechanical hypersensitivity via GABAB receptors rather than GABAA receptors in mice. J Pharmacol Sci. 2020;142(2):50-59.

DOI:10.1016/j.jphs.2019.06.010.

Mohammadi S, Oryan S, Komaki A, Eidi A, Zarei M. Effects of hippocampal microinjection of irisin, an exercise-induced myokine, on spatial and passive avoidance learning and memory in male rats. Int J Pept Res Ther. 2020;26:357-367.

DOI:10.1007/s10989-019-09842-2.

Mohammadi S, Oryan S, Komaki A, Eidi A, Zarei M. Effects of intra-dentate gyrus microinjection of myokine irisin on long-term potentiation in male rats. Arq Neuropsiquiatr. 2019;77(12):881-887.

DOI: 10.1590/0004-282x20190184.

Meng W, Adams MJ, Reel P, Rajendrakumar A, Huang Y, Deary IJ, et al. Genetic correlations between pain phenotypes and depression and neuroticism. Eur J Hum Genet. 2020;28:358-366.

DOI: 10.1038/s41431-019-0530-2.

Yamamoto T, Saito O, Shono K, Aoe T, Chiba T. Anti-mechanical allodynic effect of intrathecal and intracerebroventricular injection of orexin-A in the rat neuropathic pain model. Neurosci Lett. 2003;347(3):183-186.

DOI:10.1016/s0304-3940(03)00716-x.

Hara K, Haranishi Y, Terada T, Takahashi Y, Nakamura M, Sata T. Effects of intrathecal and intracerebroventricular administration of luteolin in a rat neuropathic pain model. Pharmacol Biochem Behav. 2014;125:78-84.

DOI:10.1016/j.pbb.2014.08.011.

Adank DN, Lunzer MM, Lensing CJ, Wilber SL, Gancarz AM, Haskell-Luevano C. Comparative in vivo investigation of intrathecal and intracerebroventricular administration with melanocortin ligands MTII and AGRP into mice. ACS Chem Neurosci. 2018;9(2):320-327.

DOI:10.1021/acschemneuro.7b00330.

Bustamante D, Paeile C, Willer JC, Le Bars D. Effects of intrathecal or intracerebroventricular administration of nonsteroidal anti-inflammatory drugs on a C-fiber reflex in rats. J Pharmacol Exp Ther. 1997;281(3):1381-1391.

Zarei M, Izadi Dastenaei Z, Jabbari S. Pain relief and kaempferol: activation of transient receptors potential vanilloid type 1 in male rats. Pajouhan Scientific J. 2020;18(2):81-89.

DOI:10.29252/psj.18.2.81.

Liu X, Wang N, Wang J, Luo F. Formalin-induced and neuropathic pain altered time estimation in a temporal bisection task in rats. Sci Rep. 2019;9(1):18683,1-11.

DOI:10.1038/s41598-019-55168-w.

Jinsmaa Y, Fujita Y, Shiotani K, Miyazaki A, Li T, Tsuda Y, et al. Differentiation of opioid receptor preference by [Dmt1] endomorphin-2-mediated antinociception in the mouse. Eur J Pharmacol. 2005;509(1):37-42.

DOI:10.1016/j.ejphar.2004.12.015.

Nagase H, Saitoh A. Research and development of κ opioid receptor agonists and δ opioid receptor agonists. Pharmacol Ther. 2020;205:107427.

DOI:10.1016/j.pharmthera.2019.107427.

Chua HC, Chebib M. GABAA receptors and the diversity in their structure and pharmacology. Adv Pharmacol. 2017;79:1-34.

DOI:10.1016/bs.apha.2017.03.003.

Mahmoudi M, Zarrindast MR. Effect of intracerebroventricular injection of GABA receptor agents on morphine-induced antinociception in the formalin test. J Psychopharmacol. 2002;16(1):85-91.

DOI:10.1177/026988110201600108.

Taves S, Berta T, Chen G, Ji RR. Microglia and spinal cord synaptic plasticity in persistent pain. Neural Plast. 2013;2013:753656,1-10.

DOI:10.1155/2013/753656.

Berta T, Park CK, Xu ZZ, Xie RG, Liu T, Lü N, et al. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. J Clin Invest. 2014;124(3):1173-1186.

DOI:10.1172/JCI72230.

Joseph EK, Levine JD. Caspase signalling in neuropathic and inflammatory pain in the rat. Eur J Neurosci. 2004;20(11):2896-2902.

DOI:10.1111/j.1460-9568.2004.03750.x.

Gruber-Schoffnegger D, Drdla-Schutting R, Hönigsperger C, Wunderbaldinger G, Gassner M, Sandkühler J. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells. J Neurosci. 2013;33(15):6540-6551. DOI:10.1523/JNEUROSCI.5087-12.2013.

Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;28(20):5189-5194.

DOI:10.1523/JNEUROSCI.3338-07.2008.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.