Crocetin suppresses the growth and migration in HCT-116 human colorectal cancer cells by activating the p-38 MAPK signaling pathway

Esmaeil Khajeh , Yousef Rasmi , Fatemeh Kheradmand, Hassan Malekinejad, Pornanong Aramwit, Ehsan Saboory, Behrokh Daeihassani, Mahdieh Nasirzadeh

Abstract


Background and purpose: Crocetin is a natural antioxidant that is found in the crocus flower and Gardenia jasminoides (fruit). Previous studies have reported its anticancer activity both in vivo and in vitro. In addition, crocetin suppresses the growth and migration of human colorectal cancer cells, however, its mechanism of action remains to be elucidated. Therefore, the present study investigated the molecular mechanism of crocetin effect on colorectal cancer cells (HCT-116) in vitro.

Experimental approach: HCT-116 cells were treated with different concentrations (0, 200, 400, 600, and      800 μM) of crocetin for 24 h. The cell survival rate was measured by MTT assay. Cell migration capacity was evaluated using the wound healing assay. The expression levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP-9) was monitored by RT-PCR. Phosphorylation of focal adhesion kinase (FAK) and p38 mitogen-activated protein kinase (MAPK) was determined using western blot.

Findings/Results: The proliferation of HCT-116 was inhibited by crocetin at 800 μM (P < 0.001). Crocetin prevented migration of HCT-116 cells (P < 0.05) and suppressed VEGF and MMP-9 mRNA expression                       (P < 0.001) and increased phosphorylation of p38 (MAPK; P < 0.001). However, no significant change in the phosphorylation of FAK was observed.

Conclusion and implication: These data suggested that crocetin-induced growth- and migration-suppressing effects on HCT-116 cells may partially depend on the regulation of the p38 (MAPK) signaling pathway.

 

 


Keywords


Keywords: Crocetin; HCT-116 cells; Matrix metalloproteinase 9; p38-mitogen activated protein kinase; Vascular endothelial growth factor.

Full Text:

PDF

References


Amin A, Bajbouj K, Koch A, Gandesiri M, Schneider-Stock R. Defective autophagosome formation in p53-Null colorectal cancer reinforces crocin-induced apoptosis. Int J Mol Sci. 2015;16(1):1544-1561.

DOI: 10.3390/ijms16011544.

Salimzadeh H, Eftekhar H, Majdzadeh R, Montazeri A, Delavari A. Effectiveness of a theory-based intervention to increase colorectal cancer screening among Iranian health club members: a randomized trial. J Behav Med. 2014;37(5):1019-1029.

DOI: 10.1007/s10865-013-9533-6.

Jin Y, Chen W, Yang H, Yan Z, Lai Z, Feng J, et al. Scutellaria barbata D. Don inhibits migration and invasion of colorectal cancer cells via suppression of PI3K/AKT and TGF‑β/Smad signaling pathways. Exp Ther Med. 2017;14(6):5527-5534.

DOI: 10.3892/etm.2017.5242.

Bowen KA, Doan HQ, Zhou BP, Wang Q, Zhou Y, Rychahou PG, et al. PTEN loss induces epithelial-mesenchymal transition in human colon cancer cells. Anticancer Res. 2009;29(11):4439-4449.

Lin JJ, Su JH, Tsai CC, Chen YJ, Liao MH, Wu YJ. 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways. Mar Drugs. 2014;12(9):4783-4798.

DOI: 10.3390/md12094783.

Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2002;2(1):7-14.

DOI: 10.1186/1471-2210-2-7.

Bolhassani A, Khavari A, Bathaie SZ. Saffron and natural carotenoids: biochemical activities and anti-tumor effects. Biochim Biophys Acta. 2014;1845(1):20-30.

DOI: 10.1016/j.bbcan.2013.11.001.

Farahmand S, Samarghandian S. The effects of Safranal, a constituent of Crocus sativus (saffron), on increased biomarkers of oxidative stress in diabetic rats’ lung. Res Pharm Sci. 2012;7(5):S3.

Salahshoor MR, Khashiadeh M, Roshankhah S, Kakabaraei S, Jalili C. Protective effect of crocin on liver toxicity induced by morphine. Res Pharm Sci. 2016;11(2):120-129.

Ghaffari S, Hatami H, Dehghan G. Saffron ethanolic extract attenuates oxidative stress, spatial learning, and memory impairments induced by local injection of ethidium bromide. Res Pharm Sci. 2015;10(3):222-232.

Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res. 2012;26(3):381-386.

DOI: 10.1002/ptr.3566.

Gutheil WG, Reed G, Ray A, Anant S, Dhar A. Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol. 2012;13(1):173-179.

DOI: 10.2174/138920112798868566.

Nasirzadeh M, Rasmi Y, Rahbarghazi R, Kheradmand F, Karimipour M, Aramwit P, et al. Crocetin promotes angiogenesis in human endothelial cells through PI3K-Akt-eNOS signaling pathway. EXCLI J. 2019;18:936-949.

DOI: 10.17179/excli2019-1175.

Melnyk JP, Wang S, Marcone MF. Chemical and biological properties of the world's most expensive spice: Saffron. Food Res Int. 2010;43(8):1981-1989.

DOI: 10.1016/j.foodres.2010.07.033.

Li S, Jiang S, Jiang W, Zhou Y, Shen XY, Luo T, et al. Anticancer effects of crocetin in human esophageal squamous cell carcinoma KYSE-150 cells. Oncol Lett. 2015;9(3):1254-1260.

DOI: 10.3892/ol.2015.2869.

Chryssanthi DG, Dedes PG, Karamanos NK, Cordopatis P, Lamari FN. Crocetin inhibits invasiveness of MDA‐MB‐231 breast cancer cells via downregulation of matrix metalloproteinases. Planta Med. 2011;77(2):146-151.

DOI: 10.1055/s-0030-1250178.

Bathaie SZ, Hoshyar R, Miri H, Sadeghizadeh M. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem Cell Biol. 2013;91(6):397-403.

DOI: 10.1139/bcb-2013-0014.

Tong Q, Qing Y, Wu Y, Hu X, Jiang L, Wu X. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways. Toxicol Appl Pharmacol. 2014;281(2):166-173.

DOI: 10.1016/j.taap.2014.07.026.

Kim GD, Bae SY, Park HJ, Bae K, Lee SK. Honokiol inhibits vascular vessel formation of mouse embryonic stem cell-derived endothelial cells via the suppression of PECAM and MAPK/mTOR signaling pathway. Cell Physiol Biochem. 2012;30(3):758-770.

DOI: 10.1159/000341455.

Lee SY, Kim HJ, Oh SC, Lee DH. Genipin inhibits the invasion and migration of colon cancer cells by the suppression of HIF-1α accumulation and VEGF expression. Food Chem Toxicol. 2018;116 (Pt B):70-76.

DOI: 10.1016/j.fct.2018.04.005.

Bolós V, Gasent JM, López-Tarruella S, Grande E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. OncoTargets Ther. 2010;3:83-97.

DOI: 10.2147/ott.s6909.

Liu SI, Huang CC, Huang CJ, Wang BW, Chang PM, Fang YC, et al. Thimerosal-induced apoptosis in human SCM1 gastric cancer cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+] i elevation. Toxicol Sci. 2007;100(1):109-117.

DOI: 10.1093/toxsci/kfm205.

Rabi T, Banerjee S. Novel synthetic triterpenoid methyl 25‐Hydroxy‐3‐Oxoolean‐12‐en‐28‐Oate induces apoptosis through JNK and p38 MAPK pathways in human breast adenocarcinoma MCF‐7 cells. Mol Carcinog. 2008;47(6):415-423.

DOI: 10.1002/mc.20399.

Low HB, Zhang Y. Regulatory roles of MAPK phosphatases in cancer. Immune Netw. 2016;16(2):85-98.

DOI: 10.4110/in.2016.16.2.85.

Loesch M, Chen G. The p38 MAPK stress pathway as a tumor suppressor or more? Front Biosci. 2008;13:3581-3593.

DOI: 10.2741/2951.

Wu J, Li H, Wang X, Zhang X, Liu W, Wang Y, et al. Effect of polysaccharide from Undaria pinnatifida on proliferation, migration and apoptosis of breast cancer cell MCF7. Int J Biol Macromol. 2019;121:734-742.

DOI: 10.1016/j.ijbiomac.2018.10.086.

Kruger NJ. The bradford method for protein quantitation. In: Walker JM, editor. Basic protein and peptide protocols. Methods in molecular biology™, vol 32. Humana Press, Springer; 1994. pp: 15-21.

DOI: 10.1385/0-89603-268-X:9.

Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A. Anti‐tumor effects of crocetin and related molecular targets. J Cell Physiol. 2018;233(3):2170-2182.

DOI: 10.1002/jcp.25953.

Kim SH, Lee JM, Kim SC, Park CB, Lee PC. Proposed cytotoxic mechanisms of the saffron carotenoids crocin and crocetin on cancer cell lines. Biochem Cell Biol. 2014;92(2):105-111.

DOI: 10.1139/bcb-2013-0091.

Zhuang X, Dong A, Wang R, Shi A. Crocetin treatment inhibits proliferation of colon cancer cells through down-regulation of genes involved in the inflammation. Saudi J Biol Sci. 2018;25(8):1767-1771.

DOI: 10.1016/j.sjbs.2017.04.005.

Hsia TC, Yu CC, Hsiao YT, Wu SH, Bau DT, Lu HF, et al. Cantharidin impairs cell migration and invasion of human lung cancer NCI-H460 cells via UPA and MAPK signaling pathways. Anticancer Res. 2016;36(11):5989-5997.

DOI: 10.21873/anticanres.11187.

Juan TK, Liu KC, Kuo CL, Yang MD, Chu YL, Yang JL, et al. Tetrandrine suppresses adhesion, migration and invasion of human colon cancer SW620 cells via inhibition of nuclear factor-κB, matrix metalloproteinase-2 and matrix metalloproteinase-9 signaling pathways. Oncol Lett. 2018;15(5):7716-7724.

DOI: 10.3892/ol.2018.8286.

Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275-292.

DOI: 10.1016/j.cell.2011.09.024.

Lv T, Zhang W, Han X. Zerumbone suppresses the potential of growth and metastasis in hepatoma HepG2 cells via the MAPK signaling pathway. Oncol Lett. 2018;15(5):7603-7610.

DOI: 10.3892/ol.2018.8335.

Tang L, Ma X, Tian Q, Cheng Y, Yao H, Liu Z, et al. Inhibition of angiogenesis and invasion by DMBT is mediated by downregulation of VEGF and MMP-9 through Akt pathway in MDA-MB-231 breast cancer cells. Food Chem Toxicol. 2013;56:204-213.

DOI: 10.1016/j.fct.2013.02.032.

Xiang M, Qian ZY, Zhou CH, Liu J, Li WN. Crocetin inhibits leukocyte adherence to vascular endothelial cells induced by AGEs. J Ethnopharmacol. 2006;107(1):25-31.

DOI: 10.1016/j.jep.2006.01.022.

Pourgholami MH, Morris DL. Inhibitors of vascular endothelial growth factor in cancer. Cardiovasc Hematol Agents Med Chem. 2008;6(4):343-347.

DOI: 10.2174/187152508785909528.

Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52-67.

DOI: 10.1016/j.cell.2010.03.015.

Wei T, Liu L, Zhou X. Cortex Dictamni extracts inhibit over-proliferation and migration of rat airway smooth muscle cells via FAK/p38/Bcl-2 signaling pathway. Biomed Pharmacother. 2018;102:1-8.

DOI: 10.1016/j.biopha.2018.03.039.

Chen YY, Liu FC, Chou PY, Chien YC, Chang WSW, Huang GJ, et al. Ethanol extracts of fruiting bodies of Antrodia cinnamomea suppress CL1-5 human lung adenocarcinoma cells migration by inhibiting matrix metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt signaling pathways. Evid Based Complement Alternat Med. 2012;2012:378415,1-11.

DOI: 10.1155/2012/378415.

Golubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed). 2014;19:687-706.

Biosci (Landmark Ed). 2014;19:687-706.

DOI: 10.2741/4236.

Liu JD, Chen SH, Lin CL, Tsai SH, Liang YC. Inhibition of melanoma growth and metastasis by combination with (−)‐epigallocatechin‐3‐gallate and

combination with (−)‐epigallocatechin‐3‐gallate and

dacarbazine in mice. J Cell Biochem. 2001;83(4):631-642.

DOI: 10.1002/jcb.1261.

Lee BY, Timpson P, Horvath LG, Daly RJ. FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther. 2015;146:132-149.

DOI: 10.1016/j.pharmthera.2014.10.001.

Koul HK, Pal M, Koul S. Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer. 2013;4(9-10):342-359.

DOI: 10.1177/1947601913507951.

Olson JM, Hallahan AR. p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med. 2004;10(3):125-129.

DOI: 10.1016/j.molmed.2004.01.007.

Cerezo-Guisado MI, Zur R, Lorenzo MJ, Risco A, Martín-Serrano MA, Alvarez-Barrientos A, et al. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG. Food Chem Toxicol. 2015;84:125-132.

DOI: 10.1016/j.fct.2015.08.017.

Liu WH, Chang LS. Caffeine induces matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 down‐regulation in human leukemia U937 cells via Ca2+/ROS‐mediated suppression of ERK/c‐fos pathway and activation of p38 MAPK/c‐jun pathway. J Cell Physiol. 2010;224(3):775-785.

DOI: 10.1002/jcp.22180.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.