Melatonin suppresses the brain injury after cerebral ischemia/reperfusion in hyperglycaemic rats
Abstract
Background and purpose: Diabetes mellitus is a disorder accompanied by oxidative and inflammatory responses, that might exacerbate vascular complications. The purpose of this study was to investigate the potential antioxidant and anti-inflammatory effects of melatonin (MLN) on streptozotocin (STZ)-induced diabetic rats subjected to middle cerebral artery occlusion followed by reperfusion (MCAO/Re).
Experimental approach: Diabetes was induced in rats by a single injection of STZ (55 mg/kg; i.p.). The cerebral injury was then induced by MCAO/Re after six weeks. After 24 h of MCAO/Re the MLN (10 mg/kg) was administered orally for 14 days. Serum and tissue samples were extracted to determine malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), interleukin-1β (IL-1β), and the tumor necrosis factor-α (TNF-α). Part of the brain tissue was kept in formalin for pathological and immunohistochemical studies to determine nuclear factor kappa B (NF-kB) and cyclooxygenase-2 (COX-2) immune reactivity.
Findings/Results: MCAO/Re in STZ-induced hyperglycaemic rats caused a decrease in brain GSH, an increase in brain MDA, and NO was increased in both serum and brain tissue. Rats showed a prominent increase in the serum and brain inflammatory markers viz. IL-1β and TNF-α. Oral treatment with MLN (10 mg/kg) for two weeks reduced the brain levels of MDA, NO, IL-1β, and TNF-α. Impressive amelioration in pathological findings, as well as a significant decrease in NF-kB and COX2 immune stained cells of the cerebral cortex, hippocampus, and cerebellum, occurred after treatment with MLN. It also succeeded to suppress the exacerbation of damage in the brain of hyperglycaemic rats.
Conclusion and implications: Daily intake of MLN attenuates the exacerbation of cerebral ischemic injury in a diabetic state.
Keywords
Full Text:
PDFReferences
Fox CS, Coady S, Sorlie PD, Levy D, Meigs JB, D’Agostino RB, et al. Trends in cardiovascular complications of diabetes. JAMA. 2004;292(20):2495-2499.
DOI: 10.1001/jama.292.20.2495.
Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes. 2003;52(1):165-171.
DOI: 10.2337/diabetes.52.1.165.
Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, et al. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud. 2010;7(1):15-25.
DOI: 10.1900/RDS.2010.7.15.
Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta. 2010;1802(1):92-99.
DOI: 10.1016/j.bbadis.2009.09.002.
Brown GC, Neher JJ. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol. 2010;41(2-3):242-247.
DOI: 10.1007/s12035-010-8105-9.
Saeed SA, Shad KF, Saleem T, Javed F, Khan MU. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res. 2007;182(1):1-10.
DOI: 10.1007/s00221-007-1050-9.
Breckwoldt MO, Chen JW, Stangenberg L, Aikawa E, Rodriguez E, Qiu S, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A. 2008;105(47):18584-18589.
DOI: 10.1073/pnas.0803945105.
Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine. 2005;27(2):131-136.
DOI: 10.1385/endo:27:2:131.
Padillo FJ, Cruz A, Navarrete C, Bujalance I, Briceño J, Gallardo JI, et al. Melatonin prevents oxidative stress and hepatocyte cell death induced by experimental cholestasis. Free Radic Res. 2004;38(7):697-704.
DOI: 10.1080/10715760410001705131.
Mirhoseini M, Gatabi ZR, Saeedi M, Morteza-Semnani K, Amiri FT, Kelidari HR, et al. Protective effects of melatonin solid lipid nanoparticles on testis histology after testicular trauma in rats. Res Pharm Sci. 2019;14(3):201-208.
DOI: 10.4103/1735-5362.258486.
Rao VSN, Santos FA, Silva RM, Teixiera MG. Effects of nitric oxide synthase inhibitors and melatonin on the hyperglycemic response to streptozotocin in rats. Vasc Pharmacol. 2002;38(3):127-130.
DOI: 10.1016/S1537-1891(02)00212-4.
Ebaid H, Bashandy SA, Abdel-Mageed AM, Al-Tamimi J, Hassan I, Alhazza IM. Folic acid and melatonin mitigate diabetic nephropathy in rats via inhibition of oxidative stress. Nutr Metab (Lond). 2020;17(1):6-19.
DOI: 10.1186/s12986-019-0419-7.
Lu L, Ma J, Sun M, Wang X, Gao E, Lu L, et al. Melatonin ameliorates MI-Induced cardiac remodeling and apoptosis through a JNK/p53-dependent mechanism in diabetes mellitus. Oxid Med Cell Longev. 2020;2020:1535201,1-15.
DOI: 10.1155/2020/1535201.
Metwally MM, Ebraheim LLM, Galal AAA. Potential therapeutic role of melatonin on STZ-induced diabetic central neuropathy: a biochemical, histopathological, immunohistochemical and ultrastructural study. Acta Histochem. 2018;120(8):828-836.
DOI: 10.1016/j.acthis.2018.09.008.
Szeto V, Chen NH, Sun HS, Feng ZP. The role of KATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacol Sin. 2018;39(5):683-694.
DOI: 10.1038/aps.2018.10.
Iwata N, Okazaki M, Kamiuchi S, Hibino Y. Protective effects of oral administrated ascorbic acid against oxidative stress and neuronal damage after cerebral ischemia/reperfusion in diabetic rats. J Health Sci. 2010;56(1):20-30.
DOI: 10.1248/jhs.56.20.
Aksoy N, Vural H, Sabuncu T, Aksoy S. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin‐induced diabetic rats. Cell Biochem Funct. 2003;21(2):121-125.
DOI: 10.1002/cbf.1006.
Lott JA, Turner K. Evaluation of Trinder's glucose oxidase method for measuring glucose in serum and urine. Clinical Chem. 1975;21(12):1754-1760.
Tipple TE, Rogers LK. Methods for the determination of plasma or tissue glutathione levels. Methods Mol Biol. 2012;889:315-324.
DOI: 10.1007/978-1-61779-867-2_20.
García-Robledo E, Corzo A, Papaspyrou S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar Chem. 2014;162:30-36.
DOI: 10.1016/j.marchem.2014.03.002.
Tukozkan N, Erdamar H, Seven I. Measurement of total malondialdehyde in plasma and tissues by high-performance liquid chromatography and thiobarbituric acid assay. Firat Tip Dergisi. 2006;11(2):88-92.
Dave KR, Tamariz J, Desai KM, Brand FJ, Liu A, Saul I, et al. Recurrent hypoglycemia exacerbates cerebral ischemic damage in streptozotocin-induced diabetic rats. Stroke. 2011;42(5):1404-1411.
DOI: 10.1161/STROKEAHA.110.594937.
Khalil MNA, Choucry MA, El Senousy AS, Hassan A, El-Marasy SA, El Awdan SA, et al. Ambrosin, a potent NF-κβ inhibitor, ameliorates lipopolysaccharide induced memory impairment, comparison to curcumin. PloS One. 2019;14(7):e0219378,1-23.
DOI: 10.1371/journal.pone.0219378.
Hassan NF, Nada SA, Hassan A, El-Ansary MR, Al-Shorbagy MY, Abdelsalam RM. Saroglitazar deactivates the hepatic LPS/TLR4 signaling pathway and ameliorates adipocyte dysfunction in rats with high-fat emulsion/LPS model-induced non-alcoholic steatohepatitis. Inflammation. 2019;42(3):1056-1070.
DOI: 10.1007/s10753-019-00967-6.
Iwata N, Takayama H, Xuan M, Kamiuchi S, Matsuzaki H, Okazaki M, et al. Effects of etanercept against transient cerebral ischemia in diabetic rats. Biomed Res Int. 2015;2015:189292,1-10.
DOI: 10.1155/2015/189292.
Gao XJ, Xie GN, Liu L, Fu ZJ, Zhang ZW, Teng LZ. Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp Ther Med. 2017;14(1):841-847.
DOI: 10.3892/etm.2017.4550.
Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther. 2009;15(4):345-357.
DOI: 10.1111/j.1755-5949.2009.00105.x.
Gürpınar T, Ekerbiçer N, Uysal N, Barut T, Tarakçı F, Tuglu MI. The effects of the melatonin treatment on the oxidative stress and apoptosis in diabetic eye and brain. ScientificWorldJournal. 2012;2012:498489,1-5.
DOI: 10.1100/2012/498489.
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res. 2018;65(1):e12490,1-22.
DOI: 10.1111/jpi.12490.
Shi S, Lei S, Tang C, Wang K, Xia Z. Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Biosci Rep. 2019;39(1):BSR20181614,1-13.
DOI: 10.1042/BSR20181614.
Puig Á, Rancan L, Paredes SD, Carrasco A, Escames G, Vara E, et al. Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model. Exp Gerontol. 2016;75:1-7.
DOI: 10.1016/j.exger.2015.11.021.
Liu H, Ou S, Xiao X, Zhu Y, Zhou S. Diabetes worsens ischemia-reperfusion brain injury in rats through GSK-3β. Am J Med Sci. 2015;350(3):204-211.
DOI: 10.1097/MAJ.0000000000000540.
Mohamed HE, El-Swefy SE, Hasan RA, Hasan AA. Neuroprotective effect of resveratrol in diabetic cerebral ischemic-reperfused rats through regulation of inflammatory and apoptotic events. Diabetol Metab Syndr. 2014;6(1):88-101.
DOI: 10.1186/1758-5996-6-88.
Niyomchan A, Sricharoenvej S, Lanlua P, Baimai S. Cerebellar synaptopathy in streptozotocin-induced diabetic rats. Int J Morphol. 2019;37(1):28-35.
DOI: 10.4067/S0717-95022019000100028.
Zeng X, Wang H, Xing X, Wang Q, Li W. Dexmedetomidine protects against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats. PLoS One. 2016;11(3):e0151620,1-15.
DOI: 10.1371/journal.pone.0151620.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.