Optimization of solvent media to solubilize TEV protease using response surface method
Abstract
Background and purpose: Tobacco etch virus (TEV) protease, a 27 KDa protein, consists of the catalytic domain of nuclear inclusion a (NIa) protein produced by Tobacco etch virus. Because of its unique sequence, TEV protease is used for purging fusion tags from proteins. It also has many advantages such as stability and activity in a board range of temperature and pH and overproduction in Escherichia coli and these benefits make this protease valuable. Despite all these benefits, TEV protease has problems like low solubility (less than 1 mg/mL). There are methods for enhancing protein solubility and in this study, the effect of additives during cell lysis was studied.
Experimental approach: Eleven different additives that made twelve different lysis buffers were used and their effect on TEV protease solubility analyzed by Plackett-Burman and response surface methodology methods.
Findings / Results: Three best effective additives on TEV solubility (L-proline, sodium selenite, and CuCl2) were selected according to software analysis and the best concentration of them was applied to optimize TEV protease solubility.
Conclusion and implications: The obtained results provided the composition of an optimum solvent for obtaining soluble TEV protease.
Keywords
Full Text:
PDFReferences
Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2003;60(5):523-533.
DOI: 10.1007/s00253-002-1158-6.
Esposito D, Chatterjee DK. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol. 2006;17(4):353-358.
DOI: 10.1016/j.copbio.2006.06.003.
Sun C, Liang J, Shi R, Gao X, Zhang R, Hong F, et al. Tobacco etch virus protease retains its activity in various buffers and in the presence of diverse additives. Protein Expr Purif. 2012;82(1):226-231.
DOI: 10.1016/j.pep.2012.01.005.
Lundbäck AK, van den Berg S, Hebert H, Berglund H, Eshaghi S. Exploring the activity of tobacco etch virus protease in detergent solutions. Anal Biochem. 2008;382(1):69-71.
DOI: 10.1016/j.ab.2008.07.018.
Cabrita LD, Gilis D, Robertson AL, Dehouck Y, Rooman M, Bottomley SP. Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci. 2007;16(11):2360-2367.
DOI: 10.1110/ps.072822507.
Tropea JE, Cherry S, Waugh DS. Expression and purification of soluble His(6)-tagged TEV protease. Methods Mol Biol. 2009;498:297-307.
DOI: 10.1007/978-1-59745-196-3-19.
Waugh DS. TEV Protease FAQ. National Cancer Institute, Macromolecular Crystallography Laboratory. 2010. Available from: https://mcl1.ncifcrf.gov/waugh_tech/faq/tev.pdf.
Blommel PG, Fox BG. A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr Purif. 2007;55(1):53-68.
DOI: 10.1016/j.pep.2007.04.013.
Jenny RJ, Mann KG, Lundblad RL. A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif. 2003;31(1):1-11.
DOI: 10.1016/s1046-5928(03)00168-2.
Phan J, Zdanov A, Evdokimov AG, Tropea JE, Peters HK, Kapust RB, et al. Structural basis for the substrate specificity of tobacco etch virus protease. J Biol Chem. 2002;277(52):50564-50572.
DOI: 10.1074/jbc.M207224200.
de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol. 2007;7:32-40.
DOI: 10.1186/1472-6750-7-32.
Papaneophytou CP, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr Purif. 2014;94:22-32.
DOI: 10.1016/j.pep.2013.10.016.
Sørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact. 2005;4(1):1-8.
DOI: 10.1186/1475-2859-4-1.
Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 2005;115(2):113-128.
DOI: 10.1016/j.jbiotec.2004.08.004.
Czitrom V. One-factor-at-a-time versus designed experiments. Am Stat. 1999;53(2):126-131.
Frey DD, Engelhardt F, Greitzer EM. A role for "one-factor-at-a-time" experimentation in parameter design. Res Eng Des. 2003;14:65-74.
DOI: 10.1007/s00163-002-0026-9.
Noguère C, Larsson AM, Guyot JC, Bignon C. Fractional factorial approach combining 4 Escherichia coli strains, 3 culture media, 3 expression temperatures and 5 N-terminal fusion tags for screening the soluble expression of recombinant proteins. Protein Expr Purif. 2012;84(2):204-213.
DOI: 10.1016/j.pep.2012.05.011.
Salehinia J, Sadeghi HMM, Abedi D, Akbari V. Improvement of solubility and refolding of an anti-human epidermal growth factor receptor 2 single-chain antibody fragment inclusion bodies. Res Pharm Sci. 2018;13(6):566-574.
DOI: 10.4103/1735-5362.245968.
Akbari V, Sadeghi HM, Jafarian-Dehkordi A, Chou CP, Abedi D. Optimization of a single-chain antibody fragment overexpression in Escherichia coli using response surface methodology. Res Pharm Sci. 2015;10(1):75-83.
Xie L, Hall D, Eiteman M, Altman E. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl Microbiol Biotechnol. 2003;63(3):267-273.
DOI: 10.1007/s00253-003-1388-2.
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965-977.
DOI: 10.1016/j.talanta.2008.05.019.
Mandenius CF, Brundin A. Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog. 2008;24(6):1191-1203.
DOI: 10.1002/btpr.67.
Leibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK, Van Voorhis WC. Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS One. 2012;7(12):e52482,1-13.
DOI: 10.1371/journal.pone.0052482.
Miladi B, Bouallagui H, Dridi C, El Marjou A, Boeuf G, Di Martino P, et al. A new tagged-TEV protease: construction, optimisation of production, purification and test activity. Protein Expr Purif. 2011;75(1):75-82.
DOI: 10.1016/j.pep.2010.08.012.
Mahmood T, Yang PC. Western blot: technique, theory, and troubleshooting. N Am J Med Sci. 2012;4(9):429-434.
DOI: 10.4103/1947-2714.100998.
Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol. 2014;5:63,1-20.
DOI: 10.3389/fmicb.2014.00063.
Puhl AC, Giacomini C, Irazoqui G, Batista-Viera F, Villarino A, Terenzi H. Covalent immobilization of tobacco-etch-virus NIa protease: a useful tool for cleavage of the histidine tag of recombinant proteins. Biotechnol Appl Biochem. 2009;53(3):165-174.
DOI: 10.1042/BA20080063.
Cesaratto F, Burrone OR, Petris G. Tobacco Etch Virus protease: A shortcut across biotechnologies. J Biotechnol. 2016;231:239-249.
DOI: 10.1006/abio.1994.1060.
van den Berg S, Löfdahl PA, Härd T, Berglund H. Improved solubility of TEV protease by directed evolution. J Biotechnol. 2006;121(3): 291-298.
DOI: 10.1016/j.jbiotec.2005.08.006.
Xiao J, Burn A, Tolbert TJ. Increasing solubility of proteins and peptides by site-specific modification with betaine. Bioconjug Chem. 2008;19(6):1113-1118.
DOI: 10.1021/bc800063k.
Singh LR, Dar TA, Rahman S, Jamal S, Ahmad F. Glycine betaine may have opposite effects on protein stability at high and low pH values. Biochim Biophys Acta. 2009;1794(6):929-935.
DOI: 10.1016/j.bbapap.2009.02.005.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.