Rational design of a new mutant of tobacco etch virus protease in order to increase the in vitro solubility

Hossein Mohammadian , Karim Mahnam, Hamid Mirmohammad Sadeghi , Mohamad Reza Ganjalikhany, Vajihe Akbari


Background and purpose: Tobacco etch virus (TEV) protease is a protease with high sequence specificity which is useful for the cleavage of fusion proteins. A major limitation of this enzyme is its relatively poor solubility. This study aimed to investigate the effects of some suggested mutations by online tools and molecular dynamics simulation to improve the solubility of TEV protease in vitro.

Experimental approach: We designed a rational multi-stage process to determine the solubilizing mutations of TEV protease. At the first stage, all the possible mutations were predicted using online tools such as PoPMuSiC and Eris servers, in which five mutations include N23F, N23L, Q74L, Q74V, and Q74I were suggested for further studies. In the next step, the three dimensional structure of the wild type (WT) and the best mutations were subjected to molecular dynamic simulations to evaluate the dynamic behaviour of the obtained structures. The selected mutation was introduced into the structure using site-directed mutagenesis and expressed in Escherichia coli BL21DE3. After purification, solubility and activity of the purified mutant and WT-TEV proteases were assayed. 

Findings / Results: By considering the analysis of various factors such as structural and solubility properties, one mutant, N23F, was selected for in vitro studies which led to a 1.5 times increase in the solubility compared to the WT while its activity was decreased somewhat.

Conclusion and implications: We propose N23F mutation, according to computational and experimental analyses for TEV proteases which resulted in a 150% increase in solubility compared to the WT.




Molecular dynamics simulation; Site-directed mutation; Solubility; TEV protease.

Full Text:



Nunn CM, Jeeves M, Cliff MJ, Urquhart GT, George RR, Chao LH, et al. Crystal structure of tobacco etch virus protease shows the protein C terminus bound within the active site. J Mol Biol. 2005;350(1): 145-155.


Miladi B, Bouallagui H, Dridi C, El Marjou A, Boeuf G, Di Martino P, et al. A new tagged-TEV protease: construction, optimisation of production, purification and test activity. Protein Expr Purif. 2011;75(1):75-82.

DOI: 10.1016/j.pep.2010.08.012.

Yi L, Gebhard MC, Li Q, Taft JM, Georgiou G, Iverson BL. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proc Natl Acad Sci U S A. 2013;110(18):7229-7234.

DOI: 10.1073/pnas.1215994110.

Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell. 2000;103(3):375-386.

DOI: 10.1016/s0092-8674(00)00130-6.

Xiao F, Widlak P, Garrard WT. Engineered apoptotic nucleases for chromatin research. Nucleic Acids Res. 2007;35(13):1-7.

DOI: 10.1093/nar/gkm486.

Yogev O, Karniely S, Pines O. Translation-coupled translocation of yeast fumarase into mitochondria in vivo. J Biol Chem. 2007;282(40):29222-29229.

DOI: 10.1074/jbc.M704201200

Ghiaci P, Norbeck J, Larsson C. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system. PLoS One. 2014;9(7):1-7.


Wehr MC, Rossner MJ. Split protein biosensor assays in molecular pharmacological studies. Drug Discov Today. 2016;21(3):415-429.

DOI: 10.1016/j.drudis.2015.11.004.

Cesaratto F, Burrone OR, Petris G. Tobacco etch virus protease: a shortcut across biotechnologies. J Biotechnol. 2016;231:239-249.

DOI: 10.1016/j.jbiotec.2016.06.012.

Kapust RB, Tözsér J, Copeland TD, Waugh DS. The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun. 2002;294(5):949-955.

DOI: 10.1016/S0006-291X(02)00574-0.

Phan J, Zdanov A, Evdokimov AG, Tropea JE, Peters HK, Kapust RB, et al. Structural basis for the substrate specificity of tobacco etch virus protease. J Biol Chem. 2002;277(52):50564-50572.

DOI: 10.1074/jbc.M207224200.

Shih YP, Wu HC, Hu SM, Wang TF, Wang AH. Self‐cleavage of fusion protein in vivo using TEV protease to yield native protein. Protein Sci. 2005;14(4):936-941.

DOI: 10.1110/ps.041129605.

Pauli A, Althoff F, Oliveira RA, Heidmann S, Schuldiner O, Lehner CF, et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell. 2008;14(2):239-251.

DOI: 10.1016/j.devcel.2007.12.009.

Cesaratto F, López-Requena A, Burrone OR, Petris G. Engineered tobacco etch virus (TEV) protease active in the secretory pathway of mammalian cells. J Biotechnol. 2015;212:159-166.

DOI: 10.1016/j.jbiotec.2015.08.026.

Wehr MC, Laage R, Bolz U, Fischer TM, Grünewald S, Scheek S, et al. Monitoring regulated protein-protein interactions using split TEV. Nat Methods. 2006;3(12):985-993.

DOI: 10.1038/nmeth967.

Sun C, Liang J, Shi R, Gao X, Zhang R, Hong F, et al. Tobacco etch virus protease retains its activity in various buffers and in the presence of diverse additives. Protein Expr Purif. 2012;82(1):226-231.

DOI: 10.1016/j.pep.2012.01.005.

Kapust RB, Tözsér J, Fox JD, Anderson DE, Cherry S, Copeland TD, et al. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng Des Sel. 2001;14(12):993-1000.

DOI: 10.1093/protein/14.12.993.

Schein CH. Solubility as a function of protein structure and solvent components. Biotechnology (N Y). 1990;8(4):308-317.

DOI: 10.1038/nbt0490-308.

Blommel PG, Fox BG. A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr Purif. 2007;55(1):53-68.

DOI: 10.1016/j.pep.2007.04.013.

Fang L, Jia KZ, Tang YL, Ma DY, Yu M, Hua ZC. An improved strategy for high-level production of TEV protease in Escherichia coli and its purification and characterization. Protein Expr Purif. 2007;51(1):102-109.

DOI: 10.1016/j.pep.2006.07.003.

Kapust RB, Waugh DS. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 1999;8(8):1668-1674.

DOI: 10.1110/ps.8.8.1668.

Cabrita LD, Gilis D, Robertson AL, Dehouck Y, Rooman M, Bottomley SP. Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci. 2007;16(11):2360-2367.

DOI: 10.1110/ps.072822507.

Van Den Berg S, Löfdahl PA, Härd T, Berglund H. Improved solubility of TEV protease by directed evolution. J Biotechnol. 2006;121(3):291-298.

DOI: 10.1016/j.jbiotec.2005.08.006.

Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002;9(9):646-652.

DOI: 10.1038/nsb0902-646.

Sotomayor M, Schulten K. Single-molecule experiments in vitro and in silico. Science. 2007;316(5828):1144-1148.

DOI: 10.1126/science.1137591.

Henzler-Wildman K, Kern D. Dynamic personalities of proteins. Nature. 2007;450:964-972.

DOI: 10.1038/nature06522.

Banisharif-Dehkordi F, Mobini-Dehkordi M, Shakhsi-Niaei M, Mahnam K. Design and molecular dynamic simulation of a new double-epitope tolerogenic protein as a potential vaccine for multiple sclerosis disease. Res Pharm Sci. 2019;14(1):20-26.

DOI: 10.4103/1735-5362.251849.

Saunders HM, Gilis D, Rooman M, Dehouck Y, Robertson AL, Bottomley SP. Flanking domain stability modulates the aggregation kinetics of a polyglutamine disease protein. Protein Sci. 2011;20(10):1675-1681.

DOI: 10.1002/pro.698.

Laskowski R, MacArthur M, Thornton J. Procheck-a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283-291.

DOI: 10.1107/S0021889892009944.

Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356(6364):83-85.

DOI: DOI: 10.1038/356083a0.

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701-1718.

DOI: 10.1002/jcc.20291.

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25.

DOI: 10.1016/j.softx.2015.06.001.

Evans DJ, Holian L. The Nose-Hoover thermostat. J Chem Phys. 1985;83(8):4069-4074.

DOI: 10.1063/1.449071.

Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys. 1981;52(12):7182-7190.

DOI: 10.1063/1.328693.

Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12): 10089-10092.

DOI: 10.1063/1.464397.

Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463-1472.

DOI: 10.1002/(SICI)1096-987X(199709)18.

Munson M, Balasubramanian S, Fleming KG, Nagi AD, O'Brien R, Sturtevant JM, et al. What makes a protein a protein? hydrophobic core designs that specify stability and structural properties. Protein Sci. 1996;5(8):1584-1593.

DOI: 10.1002/pro.5560050813.

Wang Y, Zhu GF, Ren SY, Han YG, Luo Y, Du LF. Insight into the structural stability of WT and mutants of the tobacco etch virus protease with molecular dynamics simulations. J Mol Model. 2013;19(11):4865-4875.

DOI: 10.1007/s00894-013-1930-9.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.