Aptamer-based approaches for in vitro molecular detection of cancer

Hadi Bakhtiari , Abbas Ali Palizban, Hossein Khanahmad, Mohammad Reza Mofid


Cancer is typically associated with abnormal production of various tumor-specific molecules known as tumor markers. Probing these markers by utilizing efficient approaches could be beneficial for cancer diagnosis. The current widely-used biorecognition probes, antibodies, suffer from some undeniable shortcomings. Fortunately, novel oligonucleotide-based molecular probes named aptamers are being emerged as alternative detection tools with distinctive advantages compared to antibodies. All of the existing strategies in cancer diagnostics, including those of in vitro detection, can potentially implement aptamers as the detecting moiety. Several studies have been performed in the field of in vitro cancer detection over the last decade. In order to direct future studies, it is necessary to comprehensively summarize and review the current status of the field. Most previous studies involve only a few cancer diagnostic strategies. Here, we thoroughly review recent significant advances on the applications of aptamer in various in vitro detection strategies. Furthermore, we will discuss the status of diagnostic aptamers in clinical trials.


Aptamer; Biosensor; Cancer detection; Tumor marker.

Full Text:



Floor SL, Dumont JE, Maenhaut C, Raspe E. Hallmarks of cancer: of all cancer cells, all the time? Trends Mol Med. 2012;18(9):509-515.

DOI: 10.1016/j.molmed.2012.06.005.

Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev. 2012;22(1):50-55. DOI: 10.1016/j.gde.2012.02.008.

Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6(2):140-146.

DOI: 10.1016/ j.molonc.2012.01.010

Ilgu M, Nilsen-Hamilton M. Aptamers in analytics. Analyst. 2016;141(5):1551-1568.

DOI: 10.1039/c5an01824b.

Mokhtarzadeh A, Tabarzad M, Ranjbari J, Guardia de la M, Hejazi M, Ramezani M. Aptamers as smart ligands for nano-carriers targeting. Trends Analyt Chem. 2016;82:316-327.

DOI: 10.1016/j.trac.2016.06.018.

Mirian M, Khanahmad H, Darzi L, Salehi M, Sadeghi-Aliabadi H. Oligonucleotide aptamers: potential novel molecules against viral hepatitis. Res Pharm Sci. 2017;12(2):88-98.

DOI: 10.4103/1735-5362.202447.

Vallian S, Khazaei MR. Medical applications of aptamers. Res Pharm Sci. 2007;2(2):59-66.

Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505-510. DOI: 10.1126/science.2200121.

Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science. 2000;287(5454):820-825.

DOI: 10.1126/science.287.5454.820.

Jamalvandi M, Khanahmad H, Irani S, Bastaminezhad S. Selection and characterization of single-stranded DNA aptamers against interleukin-5. Res Pharm Sci. 2019;14(6):515-523.

DOI: 10.4103/1735-5362.272560.

Taghavi S, Ramezani M, Abnous K. Preparation and evaluation of transfection efficiency of binding carbon nanotube to aptamer in breast cancer cell line. Res Pharm Sci. 2012;7(5):1000.

Boshtam M, Asgary S, Kouhpayeh S, Shariati L, Khanahmad H. Aptamers against pro-and anti-inflammatory cytokines: a review. Inflammation. 2017;40(1):340-349.

DOI: 10.1007/s10753-016-0477-1.

Fatahi A, Rahimmanesh I, Mirian M, Rohani F, Boshtam M, Gheibi A, et al. Construction and characterization of human embryonic kidney-(HEK)-293T cell overexpressing truncated α4 integrin. Res Pharm Sci. 2018;13(4):353-359.

DOI: 10.4103/1735-5362.235162.

Xu Y, Yang L, Ye X, He P, Fang Y. An aptamer-based protein biosensor by detecting the amplified impedance signal. Electroynalysis. 2006;18(15):1449-1456.

DOI: 10.1002/elan.200603566.

Lai RY, Plaxco KW, Heeger AJ. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem. 2007;79(1):229-233. DOI: 10.1021/ac061592s.

Liss M, Petersen B, Wolf H, Prohaska E. An aptamer-based quartz crystal protein biosensor. Anal Chem. 2002;74(17):4488-4495.

DOI: 10.1021/ac011294p.

Babendure JR, Adams SR, Tsien RY. Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc. 2003;125(48):14716-14717.

DOI: 10.1021/ja037994o.

Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1-8.

DOI: 10.1042/EBC20150001.

Tothill IE, editor Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20(1):55-62.

DOI: 10.1016/j.semcdb.2009.01.015.

Zeng Z, Zhang P, Zhao N, Sheehan AM, Tung CH, Chang CC, et al. Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues. Mod Pathol. 2010;23(12):1553-1558. DOI: 10.1038/modpathol.2010.151.

Han ME, Baek S, Kim HJ, Lee JH, Ryu SH, Oh SO. Development of an aptamer-conjugated fluorescent nanoprobe for MMP2. Nanoscale Res Lett. 2014;9(1):104-110.

DOI: 10.1186/1556-276X-9-104.

Wang Y, Luo Y, Bing T, Chen Z, Lu M, Zhang N, et al. DNA aptamer evolved by cell-SELEX for recognition of prostate cancer. PLoS One. 2014;9(6): e100243,1-10. DOI: 10.1371/journal.pone.0100243.

Duan M, Long Y, Yang C, Wu X, Sun Y, Li J, et al. Selection and characterization of DNA aptamer for metastatic prostate cancer recognition and tissue imaging. Oncotarget. 2016;7(24):36436-36446.

DOI: 10.18632/oncotarget.9262.

Huang ZX, Xie Q, Guo QP, Wang KM, Meng XX, Yuan BY, et al. DNA aptamer selected for specific recognition of prostate cancer cells and clinical tissues. Chinese Chem Lett. 2017;28(6):1252-1257.

DOI. 10.1016/j.cclet.2017.01.002.

Stuart CH, Riley KR, Boyacioglu O, Herpai DM, Debinski W, Qasem S, et al. Selection of a novel aptamer against vitronectin using capillary electrophoresis and next generation sequencing. Mol Ther Nucleic Acids. 2016;5(11):e386,1-9.

DOI: 10.1038/mtna.2016.91.

Ahirwar R, Vellarikkal SK, Sett A, Sivasubbu S, Scaria V, Bora U, et al. Aptamer-assisted detection of the altered expression of estrogen receptor alpha in human breast cancer. PloS One. 2016;11(4):e0153001,1-17. DOI: 10.1371/journal.pone.0153001.

Yuan B, Jiang X, Chen Y, Guo Q, Wang K, Meng X, et al. Metastatic cancer cell and tissue-specific fluorescence imaging using a new DNA aptamer developed by Cell-SELEX. Talanta. 2017;170:56-62.

DOI: 10.1016/j.talanta.2017.03.094.

In: Randall RL, editor. Metastatic bone disease. An Integrated Approach to Patient Care. 1ed. Springer; 2016. pp: 110-117.

Borghesi M, Ahmed H, Nam R, Schaeffer E, Schiavina R, Taneja S, et al. Complications after systematic, random, and image-guided prostate biopsy. Eur Urol. 2017;71(3):353-365.

DOI: 10.1016/j.eururo.2016.08.004.

Fumagalli C, Bianchi F, Raviele PR, Vacirca D, Bertalot G, Rampinelli C, et al. Circulating and tissue biomarkers in early-stage non-small cell lung cancer. Ecancermedicalscience. 2017;11:717-726.

DOI: 10.3332/ecancer.2017.717.

Konforte D, Diamandis EP. Is early detection of cancer with circulating biomarkers feasible? Clin Chem. 2013;59(1):35-37. DOI: 10.1373/clinchem.2012.184903.

Arya M, Shergill I, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5(2):209-219.

DOI: 10.1586/14737159.5.2.209.

Gheysarzadeh A, Bakhtiari H, Ansari A, Emami Razavi A, Emami MH, Mofid MR. The insulin-like growth factor binding protein-3 and its death receptor in pancreatic ductal adenocarcinoma poor prognosis. J Cell Physiol. 2019;234(12):1-10.

DOI: 10.1002/jcp.28922.

Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, et al. The real-time polymerase chain reaction. Mol Aspects Med. 2006;27(2-3):95-125.

DOI: 10.1016/j.mam.2005.12.007.

Moreno M, Fernández-Algar M, Fernández-Chamorro J, Ramajo J, Martínez-Salas E, Briones C. A combined ELONA-(RT)qPCR approach for characterizing DNA and RNA aptamers selected against PCBP-2. Molecules. 2019;24(7):1213-1228.

DOI: 10.3390/ molecules24071213.

Dos Santos VCF, Almeida NBF, de Sousa TASL, Araujo END, de Andrade ASR, Plentz F. Real-time PCR for direct aptamer quantification on functionalized graphene surfaces. Sci Rep. 2019;9(1):19311-19318.

DOI: 10.1038/s41598-019-55892-3.

Kouhpayeh S, Hejazi Z, Khanahmad H, Rezaei A. Real-time PCR: an appropriate approach to confirm ssDNA generation from PCR product in SELEX process. Iran J Biotechnol. 2017;15(2):143-148.

DOI: 10.15171/ijb.1550.

Savory N, Nzakizwanayo J, Abe K, Yoshida W, Ferri S, Dedi C, et al. Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J Microbiol Methods 2014;104:94-100.

DOI: 10.1016/j.mimet.2014.06.016.

Ouellet E, Foley JH, Conway EM, Haynes C. Hi-Fi SELEX: a high-fidelity digital-PCR based therapeutic aptamer discovery platform. Biotechnol Bioeng. 2015;112(8):1506-1522.

DOI: 10.1002/bit.25581.

Li K, Xiu CL, Gao LM, Liang HG, Xu SF, Shi M, et al. Screening of specific nucleic acid aptamers binding tumor markers in the serum of the lung cancer patients and identification of their activities. Tumour Biol. 2017;39(7):1010428317717123,1-7.

DOI: 10.1177/1010428317717123.

Li K, Qi L, Gao L, Shi M, Li J, Liu Z, et al. Selection and preliminary application of a single stranded DNA aptamer targeting colorectal cancer serum. RSC Adv. 2019;9(66):38867-38876.

DOI: 10.1039/C9RA04777H.

Wu ZS, Guo MM, Zhang SB, Chen CR, Jiang JH, Shen GL, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem. 2007;79(7):2933-2939.

DOI: 10.1021/ac0622936.

Lee KA, Ahn JY, Lee SH, Sekhon SS, Kim DG, Min J, et al. Aptamer-based sandwich assay and its clinical outlooks for detecting lipocalin-2 in hepatocellular carcinoma (HCC). Sci Rep. 2015;5:10897-10909.

DOI: 10.1038/srep10897.

Ferreira C, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S. DNA aptamers against the MUC1 tumour marker: design of aptamer-antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal Bioanal Chem. 2008;390(4):1039-1050. DOI: 10.1007/s00216-007-1470-1.

Jolly P, Damborsky P, Madaboosi N, Soares RR, Chu V, Conde JP, et al. DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens Bioelectron. 2015;79:313-319.

DOI: 10.1016/j.bios.2015.12.058.

Zhu X, Yang J, Liu M, Wu Y, Shen Z, Li G. Sensitive detection of human breast cancer cells based on aptamer-cell-aptamer sandwich architecture. Anal Chim Acta. 2013;764:59-63.

DOI: 10.1016/j.aca.2012.12.024.

Kavosi B, Salimi A, Hallaj R, Moradi F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens Bioelectron. 2015;74:915-923.

DOI: 10.1016/j.bios.2015.07.064.

Haghighi M, Khanahmad H, Palizban A. Selection and characterization of single-stranded DNA aptamers binding human B-cell surface protein CD20 by cell-SELEX. Molecules. 2018;23(4):E715,1-13.

DOI: 10.3390/molecules23040715.

Yang M, Jiang G, Li W, Qiu K, Zhang M, Carter CM, et al. Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol. 2014;7:5-18.

DOI: 10.1186/1756-8722-7-5.

Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A. 2006;103(32):11838-11843.

DOI: 10.1073/pnas.0602615103.

Mallikaratchy PR, Ruggiero A, Gardner JR, Kuryavyi V, Maguire WF, Heaney ML, et al. A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia. Nucleic Acids Res. 2011;39(6):2458-2469.

DOI: 10.1093/nar/gkq996.

Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D, Li Y, et al. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia. 2009;23(2):235-244. DOI: 10.1038/leu.2008.335.

Tan J, Yang N, Hu Z, Su J, Zhong J, Yang Y, et al. Aptamer-functionalized fluorescent silica nanoparticles for highly sensitive detection of leukemia cells. Nanoscale Res Lett. 2016;11(1):298-306.

DOI: 10.1186/s11671-016-1512-8.

Zhang P, Zhao N, Zeng Z, Feng Y, Tung CH, Chang CC, et al. Using an RNA aptamer probe for flow cytometry detection of CD30-expressing lymphoma cells. Lab Invest. 2009;89(12):1423-1432.

DOI: 10.1038/ labinvest.2009.113.

Tsai SC, Hung LY, Lee GB. An integrated microfluidic system for the isolation and detection of ovarian circulating tumor cells using cell selection and enrichment methods. Biomicrofluidics. 2017;11(3) :034122,1-11.

DOI: 10.1063/1.4991476.

Zheng F, Cheng Y, Wang J, Lu J, Zhang B, Zhao Y, et al. Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cells. Adv Mater. 2014;26(43):7333-7338.

DOI: 10.1002/adma.201403530.

Zamay GS, Kolovskaya OS, Zamay TN, Glazyrin YE, Krat AV, Zubkova O, et al. Aptamers selected to postoperative lung adenocarcinoma detect circulating tumor cells in human blood. Mol Ther. 2015;23(9):1486-1496.

DOI: 10.1038/mt.2015.108.

Li S, Chen N, Zhang Z, Wang Y. Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and release of cancer cells. Biomaterials. 2013;34(2):460-469.

DOI: 10.1016/j.biomaterials.2012.09.040.

Zhao L, Tang C, Xu L, Zhang Z, Li X, Hu H, et al. Enhanced and differential capture of circulating tumor cells from lung cancer patients by microfluidic assays using aptamer cocktail. Small. 2016;12(8):1072-1081. DOI: 10.1002/smll.201503188.

Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges. Electroanalysis. 2016;28(7):1402-1419. DOI: 10.1002/elan.201501174.

Zhou J, Cheng K, Chen X, Yang R, Lu M, Ming L, et al. Determination of soluble CD44 in serum by using a label-free aptamer based electrochemical impedance biosensor. Analyst. 2020;145(2):460-465.

DOI: 10.1039/C9AN01764J.

Safavipour M, Kharaziha M, Amjadi E, Karimzadeh F, Allafchian A. TiO2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance. Talanta. 2020;208:120369-120370.


Arya SK, Zhurauski P, Jolly P, Batistuti MR, Mulato M, Estrela P. Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens Bioelectron. 2018;102:106-112.

DOI: 10.1016/j.bios.2017.11.013.

Yazdanparast S, Benvidi A, Banaei M, Nikukar H, Tezerjani MD, Azimzadeh M. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Mikrochim Acta. 2018;185(9):405. DOI: 10.1007/s00604-018- 2918-z.

Motaghi H, Ziyaee S, Mehrgardi MA, Kajani AA, Bordbar AK. Electrochemiluminescence detection of human breast cancer cells using aptamer modified bipolar electrode mounted into 3D printed microchannel. Biosens Bioelectron. 2018;118:217-223.

DOI: 10.1016/j.bios.2018.07.066.

Nie Y, Yuan X, Zhang P, Chai YQ, Yuan R. Versatile and ultrasensitive electrochemiluminescence biosensor for biomarker detection based on nonenzymatic amplification and aptamer-triggered emitter release. Anal Chem. 2019;91(5):3452-3458.

DOI: 10.1021/acs.analchem.8b05001.

Tabrizi MA, Shamsipur M, Saber R, Sarkar S. Isolation of HL-60 cancer cells from the human serum sample using MnO2-PEI/Ni/Au/aptamer as a novel nanomotor and electrochemical determination of thereof by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode. Biosens Bioelectron. 2018;110:141-146.

DOI: 10.1016/j.bios.2018.03.034.

Song S, Na J, Jang M, Lee H, Lee HS, Lim YB, et al. A CMOS VEGF sensor for cancer diagnosis using a peptide aptamer-based functionalized microneedle. IEEE Trans Biomed Circuits Syst. 2019;13(6):1288-1299.

DOI: 10.1109/TBCAS.2019.2954846.

Ou D, Sun D, Lin X, Liang Z, Zhong Y, Chen Z. A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J Mater Chem B. 2019;7(23):3661-3669.

DOI: 10.1039/C9TB00472F.

Hasanzadeh M, Razmi N, Mokhtarzadeh A, Shadjou N, Mahboob S. Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. Int J Biol Macromol. 2018;108:69-80.

DOI: 10.1016/j.ijbiomac.2017.11.149.

Li Y, Zhang Y, Zhao M, Zhou Q, Wang L, Wang H, et al. A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells. Chem Commun (Camb). 2016;52(20):3959-3961.

DOI: 10.1039/c6cc01014h.

Li Y, Wang X, Zhou Q, Zhang Y, Zhan L. A simple aptamer-functionalized gold nanorods based biosensor for early diagnosis of breast cancer in needle biopsy. Nanomedicine. 2016;20(12):477.

Chen H, Hou Y, Ye Z, Wang H, Koh K, Shen Z, et al. Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid. Sens Actuators B Chem. 2014;201:433-438.

DOI: 10.1016/j.snb.2014.04.040.

Li SK, Chen AY, Chai YQ, Yuan R, Zhuo Y. Electrochemiluminescence aptasensor based on cascading amplification of nicking endonuclease-assisted target recycling and rolling circle amplifications for mucin 1 detection. Electrochim Acta. 2016;212:767-774.

DOI: 10.1016/j.electacta.2016.07.074.

Lin C, Zheng H, Huang Y, Chen Z, Luo F, Wang J, et al. Homogeneous electrochemical aptasensor for mucin 1 detection based on exonuclease I-assisted target recycling amplification strategy. Biosens Bioelectron. 2018;117:474-479. DOI: 10.1016/j.bios.2018.06.056.

Chen H, Hou Y, Qi F, Zhang J, Koh K, Shen Z, et al. Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance. Biosens Bioelectron. 2014;61:83-87.

DOI: 10.1016/j.bios.2014.05.005.

Fu XM, Liu ZJ, Cai SX, Zhao YP, Wu DZ, Li CY, et al. Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters. Chinese Chem Lett. 2016;27(6):920-926.

DOI: 10.1016/j.cclet.2016.04.014.

Zhang H, Li M, Li C, Guo Z, Dong H, Wu P, et al. G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: combination of aptamer-target recognition and T7 exonuclease-assisted cycling signal amplification. Biosens Bioelectron. 2015;74:98-103.

DOI: 10.1016/j.bios.2015.05.069.

Jun J, Lee JS, Shin DH, Jang J. Aptamer-functionalized hybrid carbon nanofiber FET-type electrode for a highly sensitive and selective platelet-derived growth factor biosensor. ACS Appl Mater Interfaces. 2014;6(16):13859-13865.

DOI: 10.1021/am5032693.

Wang Q, Zheng H, Gao X, Lin Z, Chen G. A label-free ultrasensitive electrochemical aptameric recognition system for protein assay based on hyperbranched rolling circle amplification. Chem Commun (Camb). 2013;49(97):11418-11420.

DOI: 10.1039/c3cc46274a.

Huang KJ, Shuai HL, Zhang JZ. Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification. Biosens Bioelectron. 2016;77:69-75.

DOI: 10.1016/j.bios.2015.09.026.

Yu Y, Su G, Zhu H, Zhu Q, Chen Y, Xu B, et al. Proximity hybridization-mediated isothermal exponential amplification for ultrasensitive electrochemical protein detection. Int J Nanomedicine. 2017;12:5903-5914.

DOI: 10.2147/IJN.S142015.

Zhu D, Yang RX, Tang YP, Li W, Miao ZY, Hu Y, et al. Robust nanoplasmonic substrates for aptamer macroarrays with single-step detection of PDGF-BB. Biosens Bioelectron. 2016;85:429-436.

DOI: 10.1016/j.bios.2016.05.039.

Wang P, Wan Y, Deng S, Yang S, Su Y, Fan C, et al. Aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) for electrochemical analysis of tumor biomarkers. Biosens Bioelectron. 2016;86:536-541.

DOI: 10.1016/j.bios.2016.07.025.

Jiang W, Liu L, Zhang L, Guo Q, Cui Y, Yang M. Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacid and rolling circle amplification. Microchim Acta. 2017;184(12):4757-4763.

DOI 10.1007/s00604-017-2522-7.

Ge L, Wang W, Hou T, Li F. A versatile immobilization-free photoelectrochemical biosensor for ultrasensitive detection of cancer biomarker based on enzyme-free cascaded quadratic amplification strategy. Biosens Bioelectron. 2016;77:220-226.

DOI: 10.1016/j.bios.2015.09.041.

Wang YL, Cao JT, Chen YH, Liu YM. A label-free electrochemiluminescence aptasensor for carcino-embryonic antigen detection based on electrodeposited ZnS-CdS on MoS2 decorated electrode. Anal Methods. 2016;8(26):5242-5247.

DOI: 10.1039/C6AY01114D.

Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Xu Y. Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters' fluorescence. Biosens Bioelectron. 2015;64:345-351. DOI: 10.1016/j.bios.2014.09.029.

Tabasi A, Noorbakhsh A, Sharifi E. Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron. 2017;95:117-123. DOI: 10.1016/j.bios.2017.04.020.

Yang S, You M, Zhang F, Wang Q, He P. A sensitive electrochemical aptasensing platform based on exonuclease recycling amplification and host-guest recognition for detection of breast cancer biomarker HER2. Sens Actuators B Chem. 2018;258:796-802.

DOI: 10.1016/j.snb.2017.11.119.

Qureshi A, Gurbuz Y, Niazi JH. Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sens Actuators B Chem. 2015;220:1145-51.

DOI: 10.1016/j.snb.2015.06.094.

Sun D, Lu J, Zhong Y, Yu Y, Wang Y, Zhang B, et al. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. Biosens Bioelectron. 2016;75:301-307. DOI: 10.1016/j.bios.2015.08.056.

Sun D, Lu J, Luo Z, Zhang L, Liu P, Chen Z. Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification. Biosens Bioelectron. 2018;120:8-14. DOI: 10.1016/j.bios.2018.08.002.

Chen D, Sun D, Wang Z, Qin W, Chen L, Zhou L, et al. A DNA nanostructured aptasensor for the sensitive electrochemical detection of HepG2 cells based on multibranched hybridization chain reaction amplification strategy. Biosens Bioelectron. 2018;117:416-421.

DOI: 10.1016/j.bios.2018.06.041.

Wang K, He MQ, Zhai FH, He RH, Yu YL. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta. 2017;166:87-92.

DOI: 10.1016/j.talanta.2017.01.052.

Liang L, Su M, Li L, Lan F, Yang G, Ge S, et al. Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens Actuators B Chem. 2016;229:347-354.

DOI: 10.1016/j.snb.2016.01.137.

Zhou G, Lin M, Song P, Chen X, Chao J, Wang L, et al. Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. Anal Chem. 2014;86(15):7843-7848.

DOI: 10.1021/ac502276w.

Khoshfetrat SM, Mehrgardi MA. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry. 2017;114:24-32.

DOI: 10.1016/j.bioelechem.2016.12.001.

Liu J, Cui M, Niu L, Zhou H, Zhang S. Enhanced peroxidase‐like properties of graphene-hemin-composite decorated with Au nanoflowers as electrochemical aptamer biosensor for the detection of K562 leukemia cancer cells. Chemistry. 2016;22(50):18001-18008. DOI: 10.1002/chem.201604354.

Feng QM, Liu Z, Chen HY, Xu JJ. Paper-based electrochemiluminescence biosensor for cancer cell detection. Electrochem Commun. 2014;49:88-92.

DOI: 10.1016/j.elecom.2014.10.015.

Jeong HY, Baek SH, Chang SJ, Cheon SA, Park TJ. Robust fluorescence sensing platform for detection of CD44 cells based on graphene oxide/gold nanoparticles. Colloids Surf B Biointerfaces. 2015;135:309-315.

DOI: 10.1016/j.colsurfb.2015.07.083.

Liu R, Wang Q, Li Q, Yang X, Wang K, Nie W. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron. 2017;87:433-438.

DOI: 10.1016/j.bios.2016.08.090.

Liu G, Mao X, Phillips JA, Xu H, Tan W, Zeng L. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem. 2009;81(24):10013-10018. DOI: 10.1021/ac901889s.

Bayat P, Taghdisi SM, Rafatpanah H, Abnous K, Ramezani M. In vitro selection of CD70 binding aptamer and its application in a biosensor design for sensitive detection of SKOV-3 ovarian cells. Talanta. 2019;194:399-405.

DOI: 10.1016/j.talanta.2018.10.063.

Gedi V, Song CK, Kim GB, Lee JO, Oh E, Shin BS, et al. Sensitive on-chip detection of cancer antigen 125 using a DNA aptamer/carbon nanotube network platform. Sens Actuators B Chem. 2018;256:89-97.

DOI. 10.1016/j.snb.2017.10.049.

Gong S, Ren H, Lin C, Hu P, Tian R, Liu Z, et al. Immunochromatographic strip biosensor for the rapid detection of N-glycolylneuraminic acid based on aptamer-conjugated nanoparticle. Anal Biochem. 2018;561:52-58.

DOI: 10.1016/j.ab.2018.07.017.

Liu J, Zhang Y, Zhao Q, Situ B, Zhao J, Luo S, et al. Bifunctional aptamer-mediated catalytic hairpin assembly for the sensitive and homogenous detection of rare cancer cells. Anal Chim Acta. 2018;1029:58-64. DOI: 10.1016/j.aca.2018.04.068.

Luo Z, Xu Y, Huang Z, Chen J, Wang X, Li D, et al. A rapid, adaptative DNA biosensor based on molecular beacon-concatenated dual signal amplification strategies for ultrasensitive detection of p53 gene and cancer cells. Talanta. 2020;210:120638-120645.

DOI: 10.1016/j.talanta.2019.120638.

Mazhabi RM, Ge L, Jiang H, Wang X. A label-free aptamer-based cytosensor for specific cervical cancer HeLa cell recognition through a g-C3N4-AgI/ITO photoelectrode. J Mater Chem B. 2018;6(31):5039-5049. DOI: 10.1039/C8TB01067F.

Zhao L, Cheng M, Liu G, Lu H, Gao Y, Yan X, et al. A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen. Sens Actuators B Chem. 2018;273:185-190. DOI: 10.1016/j.snb.2018.06.004.

Molecular Biosensors for Detection of Bladder Cancer. Available from: https://clinicaltrials.gov/ct2/ show/NCT02957370?term=aptamer&draw=2&rank=7.

Dong J, He L, Wang Y, Yu F, Yu S, Liu L, et al. A highly sensitive colorimetric aptasensor for the detection of the vascular endothelial growth factor in human serum. Spectrochim Acta A Mol Biomol Spectrosc. 2020;226:117622-117627.

DOI: 10.1016/j.saa.2019.117622.

Shayesteh OH, Ghavami R. A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. Spectrochim Acta A Mol Biomol Spectrosc. 2020;226:117644-117650.

DOI: 10.1016/j.saa.2019.117644.

Xu H, Wu D, Li CQ, Lu Z, Liao XY, Huang J, et al. Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron. 2017;90: 314-320.

DOI: 10.1016/j.bios.2016.12.003.

Ahirwar R, Nahar P. Development of a label-free gold nanoparticle-based colorimetric aptasensor for detection of human estrogen receptor alpha. Anal Bioanal Chem. 2016;408(1):327-332.

DOI: 10.1007/s00216-015-9090-7.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.