Elucidating the interaction of letrozole with human serum albumin by combination of spectroscopic and molecular modeling techniques

Nooshin Bijari , Sajad Moradi, Sirous Ghobadi, Mohsen Shahlaei

Abstract


Human serum albumin (HSA) is the most abundant protein found in human blood and is extensively employed in clinical applications such as hypovolemic shock treatment. Also, there has been a lot of attempt to use HSA as a carrier to deliver various drugs to their specific targets. Thus, clarify of structure, dynamics, functions, and features of HSA-drug complexes play an important role from the viewpoint of pharmaceutical and/or biochemical sciences. In this study, the interaction of letrozole, as a non-steroidal aromatase inhibitor, with HSA has been studied by combining different techniques such as UV-Vis, fluorescence spectroscopy, and computational methods. The binding of letrozole quenches the serum albumin fluorescence intensities. A clear decrease in fluorescence intensities of letrozole-HSA complex with the increase in temperature showed the static mode of fluorescence quenching. The results of Stern-Volmer procedure analysis showed that letrozole is bound only to a site from the HSA. The results of thermodynamic analysis showed that reaction between HSA and letrozole is spontaneous and exothermic. Furthermore, by monitoring the intrinsic fluorescence and using site markers competitive measurement, the binding of letrozole in the neighborhood of Sudlow’s site I of HSA has been proved. Finally, computational methods substantiated the experimental findings and it was revealed that letrozole was bound to Arg-209, Trp-214, Ala-350, and Gly-238 residues of subdomain IIA and IIIA of HSA, respectively.

Keywords


Human serum albumin; Fluorescence quenching; Letrozole; Site marker; Sudlow’s site I.

Full Text:

PDF

References


Travis RC, Key TJ. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 2003;5(5):239-247.

Bhatnagar AS. The discovery and mechanism of action of letrozole. Breast Cancer Res Treat. 2007;105(Suppl 1):7-17.

Mojaddami A, Sakhteman A, Fereidoonnezhad M, Faghih Z, Najdian A, Khabnadideh S, et al. Binding mode of triazole derivatives as aromatase inhibitors based on docking, protein ligand interaction fingerprinting, and molecular dynamics simulation studies. Res Pharm Sci. 2017;12(1):21-30.

Colussi DM, Parisot CY, Lefèvre GY. Plasma protein binding of letrozole, a new nonsteroidal aromatase enzyme inhibitor. J Clin Pharmacol. 1998;38(8):727-735.

Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S. Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol. 2005;353(1):38-52.

Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S. Interaction of an anticancer drug, gefitinib with human serum albumin: insights from fluorescence spectroscopy and computational modeling analysis. RSC Adv. 2016;6(94):91756-91767.

Shahlaei M, Rahimi B, Ashrafi-Kooshk MR, Sadrjavadi K, Khodarahmi R. Probing of possible olanzapine binding site on human serum albumin: Combination of spectroscopic methods and molecular dynamics simulation. J Lumin. 2015;158:91-98.

Moradi N, Ashrafi-Kooshk MR, Ghobadi S, Shahlaei M, Khodarahmi R. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?. J Lumin. 2015;160:351-361.

Shahlaei M, Rahimi B, Nowroozi A, Ashrafi-Kooshk M R, Sadrjavadi K, Khodarahmi R. Exploring binding properties of sertraline with human serum albumin: Combination of spectroscopic and molecular modeling studies. Chem Biol Interact. 2015;242:235-246.

Jafari F, Samadi S, Nowroozi A, Sadrjavadi K, Moradi S, Ashrafi-Kooshk MR, et al. Experimental and computational studies on the binding of diazinon to human serum albumin. J Biomol Struct Dyn. 2018;36(6):1490-1510.

Soheili V, Abdollahpour N, Zendehbad S, Abdollahpour M, Alipour A. Bioinformatics analysis of human serum albumin for determination of herbal anti-diabetic compound binding site. Res Pharm Sci. 2012;7(5):S519.

Beiranvand Z, Bani F, Kakanejadifard A, Laurini E, Fermeglia M, Pricl S, et al. Anticancer drug delivery systems based on specific interactions between albumin and polyglycerol. RSC Adv. 2016;6(14):11266-11277.

Tajmir-Riahi HA. An overview of drug binding to human serum albumin: protein folding and unfolding. Sci Iran. 2007;14(2):87-95.

Moradi N, Ashrafi-Kooshk MR, Chamani J, Shackebaei D, Norouzi F. Separate and simultaneous binding of tamoxifen and estradiol to human serum albumin: Spectroscopic and molecular modeling investigations. J Mol Liq. 2018;249: 1083-1096.

Moradi S, Taran M, Shahlaei M. Investigation on human serum albumin and Gum Tragacanth interactions using experimental and computational methods. Int J Biol Macromol. 2018; 107(Pt B):2525-2533.

Yamasaki K, Chuang VT, Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Biochim Biophys Acta. 2013;1830(12):5435-5443.

Hou HN, Qi ZD, OuYang YW, Liao FL, Zhang Y, Liu Y. Studies on interaction between Vitamin B12 and human serum albumin. J Pharm Biomed Anal. 2008;47(1):134-139.

Chen T, Cao H, Zhu S, Lu Y, Shang Y, Wang M, et al. Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding. Spectrochim Acta A Mol Biomol Spectrosc. 2011;81(1):645-652.

Zhang G, Wang Y, Zhang H, Tang S, Tao W. Human serum albumin interaction with paraquat studied using spectroscopic methods. Pest Biochem Phys. 2007;87(1):23-29.

Kalanur SS, Seetharamappa J, Kalalbandi VK. Characterization of interaction and the effect of carbamazepine on the structure of human serum albumin. J Pharm Biomed Anal. 2010;53(3): 660-666.

Poureshghi F, Ghandforoushan P, Safarnejad A, Soltani S. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods. J Photochem Photobiol B. 2017;166:187-192.

Ajmal MR, Nusrat S, Alam P, Zaidi N, Khan MV, Zaman M, et al. Interaction of anticancer drug clofarabine with human serum albumin and human α-1 acid glycoprotein. Spectroscopic and molecular docking approach. J Pharm Biomed Anal. 2017;135:106-115.

Maryam L, Sharma A, Azam MW, Khan SN, Khan AU. Understanding the mode of binding mechanism of doripenem to human serum albumin: Spectroscopic and molecular docking approaches. J Mol Recognit. 2018:e2710. DOI: 10.1002/jmr.2710.

Bourassa P, Thomas TJ, Tajmir-Riahi HA. A short review on the delivery of breast anticancer drug tamoxifen and its metabolites by serum proteins. J Nanomed Res. 2016;4(2):80-87.

Chatterjee T, Pal A, Dey S, Chatterjee BK, Chakrabarti P. Interaction of virstatin with human serum albumin: spectroscopic analysis and molecular modeling. PLoS One. 2012;7(5): e37468-e37479.

Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare O. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J Pharm Biomed Anal. 2006;41(2):393-399.

Yeggoni DP, Kuehne C, Rachamallu A, Subramanyam R. Elucidating the binding interaction of andrographolide with the plasma proteins: biophysical and computational approach. RSC Adv. 2017;7(79):5002-5012.

Bai HX, Liu XH, Yang F, Yang XR. Interactions of human serum albumin with phenothiazine drugs: insights from fluorescence spectroscopic studies. J Chin Chem Soc. 2009;56(4):696-702.

Alam P, Chaturvedi SK, Anwar T, Siddiqi MK, Ajmal MR, Badr G, et al. Biophysical and molecular docking insight into the interaction of cytosine β-D arabinofuranoside with human serum albumin. J Lumin. 2015;164:123-130.

Bijari N, Ghobadi S, Mahdiuni H, Khodarahmi R, Ghadami SA. Spectroscopic and molecular modeling studies on binding of dorzolamide to bovine and human carbonic anhydrase II. Inter J Biol Macromol. 2015;80:189-199.

Shen GF, Liu TT, Wang Q, Jiang M, Shi JH. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). J Photochem Photobiol B. 2015;153:380-390.

Xu H, Yao N, Xu H, Wang T, Li G, Li Z. Characterization of the interaction between eupatorin and bovine serum albumin by spectroscopic and molecular modeling methods. Int J Mol Sci. 2013;14(7):14185-14203.

Chaturvedi SK, Ahmad E, Khan JM, Alam P, Ishtikhar M, Khan RH. Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. Mol Biosyst. 2015;11(1): 307-316.

Bijari N, Shokoohinia Y, Ashrafi-Kooshk MR, Ranjbar S, Parvaneh S, Moieni-Arya M, et al. Spectroscopic study of interaction between osthole and human serum albumin: Identification of possible binding site of the compound. J Lumin. 2013;143:328-336.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank, 1999-. In: Fuess H, Hahn Th, Wondratschek H, Müller U, Shmueli U, Prince E, et al., editors. International Tables for Crystallography. Vol F: Crystallography of Biological Macromolecules. Springer; 2006. pp. 675-684.

Froimowitz M. HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques. 1993;14(6):1010-1013.

Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219-3228.

Wolber G, Dornhofer AA, Langer T. Efficient overlay of small organic molecules using 3D pharmacophores. J Comp Aided Mol Des. 2006;20(12):773-788.

Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996; 14(1):33-38.

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701-1718.

Berendsen HJC, Postma JPM, van Gunsteren W, DiNola A, Haak J. Molecular dynamics with coupling to an external bath. J Chem Physi. 1984;81:3684-3690.

Parrinello M, Rahman A. Crystal structure and pair potentials: A molecular-dynamics study. Phys Rev Lett. 1980;45(4):1196-1198.

Van Gunsteren WF, Berendsen H. A leap-frog algorithm for stochastic dynamics. Mol Sim. 1988;1(3):173-185.

Sun Y, Wei S, Yin C, Liu L, Hu C, Zhao Y, et al. Synthesis and spectroscopic characterization of 4-butoxyethoxy-N-octadecyl-1, 8-naphthalimide as a new fluorescent probe for the determination of proteins. Bioorg Med Chem Lett. 2011;21(12): 3798-3804.

Wang Q, Sun Q, Tang P, Tang B, He J, Ma X, et al. Determination of potential main sites of apixaban binding in human serum albumin by combined spectroscopic and docking investigations. RSC Adv. 2015;5(99):81696-81706.

Borgå O, Borgå B. Serum protein binding of nonsteroidal antiinflammatory drugs: a comparative study. J Pharmacokinet Biopharm. 1997; 25(1):63-77.

Ghalandari B, Divsalar A, Saboury AA, Haertlé T, Parivar K, Bazl R, et al. Spectroscopic and theoretical investigation of oxali-palladium interactions with β-lactoglobulin. Spectrochim Acta A Mol Biomol Spectrosc. 2014;118:1038-1046.

Mahdiuni H, Bijari N, Varzandian M, Ghadami SA, Khazaei M, Nikbakht MR, et al. Appraisal of sildenafil binding on the structure and promiscuous esterase activity of native and histidine-modified forms of carbonic anhydrase II. Biophys Chem. 2013;175-176:1-16.

Brodersen R, Andersen S, Vorum H, Nielsen SU, Pedersen AO. Multiple fatty acid binding to albumin in human blood plasma. Eur J Biochem. 1990;189(2):343-349.

Sudlow G, Birkett DJ, Wade DN. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol. 1976;12(6):1052-1061.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.