Preparation and in vitro characterization of retinoic acid-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles
Abstract
In order to achieve the controlled release of all-trans-retinoic acid (ATRA), poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) copolymer with average molecular weight of 5.34 kDa was synthesized. The nanosized micelles were prepared from copolymer by nano-precipitation method. Critical association concentration (CAC) of micelles was measured by fluorimetry and results indicated low CAC value of micelles (1.9 × 10-3 g/L). ATRA was encapsulated in the core of micelles using different ratios of drug to copolymer. In the case of 10% drug to polymer ratio, more than 80% of the drug was released within 3 days, whereas for ratio of 2% more than 90% of the drug was released within 3 h. The cytotoxic study performed by MTT assay showed that H1299 survival percent decreased significantly (P ≤ 0.05) after exposure to drug-loaded micelles, while no proliferation inhibition effect was observed by either free ATRA or blank PCL-PEG-PCL micelles.
Keywords
Full Text:
PDFReferences
Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, et al. Use of all-trans retinoic acid in the treatment of acute promyelocyte leukemia. Blood. 1988;72(2):567-572.
Defer GL, Adle-Biassette H, Ricolfi F, Martin L, Authier FJ, Chomienne C, et al. All-trans retinoic acid in relapsing malignant gliomas: clinical and radiological stabilization associated with the appearance of intratumoral calcifications. J Neurooncol. 1997;34(2):169-177.
Nikbakht Dastjerdi M, Zamani S, Mardani M, Hashemi Beni B. All-trans retinoic acid and genistein induce cell apoptosis in OVCAR-3 cells by increasing the P14 tumor suppressor gene. Res Pharm Sci. 2016; 11(6):505-512.
Lübbert M, Müller-Tidow C, Hofmann WK, Koeffler HP. Advances in the treatment of acute myeloid leukemia: from chromosomal aberrations to biologically targeted therapy. J Cell Biochem. 2008;104(6):2059-2070.
Nervi C, Vollberg TM, George MD, Zelent A, Chambon P, Jetten AM. Expression of nuclear retinoic acid receptors in normal tracheobronchial cells and in lung carcinoma cells. Exp Cell Res. 1991;195(1):163-170.
Treat J, Friedland D, Luginbuhl W, Meehan L, Gorman G, Miller W Jr, et al. Phase II trial of all-trans retinoic acid in metastatic non-small cell lung cancer. Cancer Invest. 1996;14(5):415-420.
Rigas JR, Miller VA, Zhang ZF, Klimstra DS, Tong WP, Kris MG, et al. Metabolic phenotypes of retinoic acid and the risk of lung cancer. Cancer Res. 1996;56(12):2692-2696.
Arrieta O, González-De la Rosa CH, Aréchaga-Ocampo E, Villanueva-Rodríguez G, Cerón-Lizárraga TL, Martínez-Barrera L, et al. Randomized phase II trial of all-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non–small-cell lung cancer. J Clin Oncol. 2010;28(21):3463-3471.
Quintero Barceinas RS, García-Regalado A, Aréchaga-Ocampo E, Villegas-Sepúlveda N, González-De la Rosa CH. All-trans retinoic acid induces proliferation, survival, and migration in A549 lung cancer cells by activating the ERK signaling pathway through a transcription-independent mechanism. BioMed Res Inter. 2015; Article ID 404368: 10 pages.
Choi EJ, Whang YM, Kim SJ, Kim HJ, Kim YH. Combinational treatment with retinoic acid derivatives in non-small cell lung carcinoma in vitro. J Korean Med Sci. 2007; Suppl:S52-60.
Fang J, Chen SJ, Tong JH, Wang ZG, Chen GQ, Chen Z. Treatment of acute promyelocytic leukemia with ATRA and As2O3: a model of molecular target-based cancer therapy. Cancer Biol Ther. 2002;1(6):614-620.
Kim DG, Choi C, Jeong YI, Jang MK, Nah JW, Kang SK, et al. All-trans retinoic acid-associated low molecular weight water-soluble chitosan nanoparticles based on ion complex. Macromol Res. 2006;14(1):66-72.
Coradini D. New chemical strategies for overcoming ATRA resistance in APL cells. Leuk Res. 2006;31(3):291-302.
Szuts EZ, Harosi FI. Solubility of retinoids in water. Arch Biochem Biophys. 1991;287(2):297-304.
Brisaert MG, Everaerts I, Plaizier-Vercammen JA. Chemical stability of tretinoin in dermatological preparations. Pharm Acta Helv.1995;70(2):161-166.
Ioele G, Cione E, Risoli A, Genchi G, Ragno G. Accelerated photostability study of tretinoin and isotretinoin in liposome formulations. Int J Pharm. 2005;293(1-2):251-260.
Kawakami S, Opanasopit P, Yokoyama M, Chansri N, Yamamoto T, Okano T, et al. Biodistribution characteristics of all-trans retinoic acid incorporated in liposomes and polymeric micelles following intravenous administration. J Pharm Sci. 2005;94(12):2606-2615.
Li Y, Qi XR, Maitani Y, Nagai T. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations. Nanotechnology. 2009;20(5):055106.
Fattahi A, Golozar MA, Varshosaz J, Sadeghi HM, Fathi M. Preparation and characterization of micelles of oligomeric chitosan linked to all-trans retinoic acid. Carb Pol. 2012;87(2):1176-1184.
Hwang SR, Lim SJ, Park JS, Kim CK. Phospholipid-based microemulsion formulation of all-trans-retinoic acid for parenteral administration. Int J Pharm. 2004;276(1-2):175-183.
Seo SJ, Kim SH, Sasagawa T, Choi YJ, Akaike T, Cho CS. Delivery of all trans-retinoic acid (RA) to hepatocyte cell line from RA/galactosyl α-cyclodextrin inclusion complex. Eur J Pharm Biopharm. 2004;58(3):681-687.
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113-131.
Sajadi Tabassi SA, Khodaverdi E, Hadizadeh F, Rashid R. Preparation of hydrogels based on inclusion complexes of the triblock copolymer PCL-PEG-PCL with α-cyclodextrin (α-CD). Res Pharm Sci. 2012;7(5):S975.
Edlund U, Albertsson AC. Degradable polymer microspheres for controlled drug delivery. Degradable aliphatic polyesters. Advances in Polymer Science. V. 157. Springer Berlin Heidelberg; 2002. pp. 67-112.
Herold DA, Keil K, Bruns DE. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem Pharmacol. 1989;38(1):73-76.
Danafar H, Rostamizadeh K, Davaran S, Hamidi M. Preparation and characterization of PLA-PEG-PLA tri-block copolymer polymersomes as a novel carrier for lisinopril. Res Pharm Sci. 2012;7(5):S398.
Gong C, Shi S, Dong P, Kan B, Gou M, Wang X, et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm. 2009;365 (1-2):89-99.
Lin WJ, Wang CL, Juang LW. Characterization and comparison of diblock and triblock amphiphilic copolymers of poly (δ‐valerolactone). J Appl Pol Sci. 2006;100(3):1836-1841.
Liu CB, Gong CY, Huang MJ, Wang JW, Pan YF, Zhang YD, et al. Thermoreversible gel-sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res B Appl Biomater. 2008;84(1):165-175.
Ge H, Hu Y, Jiang X, Cheng D, Yuan Y, Bi H, et al. Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) amphiphilic triblock copolymer micelles. J Pharm Sci. 2002;91(6):1463-1473.
Debye P. Light scattering in solutions. J Appl Phys. 1944;15(4):338-342.
Jin Y. Nanotechnology in pharmaceutical manufacturing. Pharm Sci Encycl. 2010;32:1-32.
Fattahi A, Petrini P, Munarin F, Shokoohinia Y, Golozar MA, Varshosaz J, et al. Polysaccharides derived from tragacanth as biocompatible polymers and gels. J Appl Pol Sci. 2013;129(4):2092-2102.
Zhang L, Chen Z, Wang H, Wu S, Zhao K, Sun H, et al. Preparation and evaluation of PCL-PEG-PCL polymeric nanoparticles for doxorubicin delivery against breast cancer. RSC Adv. 2016;6(60):54727-54737.
Na K, Park KH, Kim SW, Bae YH. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release. 2000;69(2):225-236.
Sun SY, Yue P, Shroot B, Hong WK, Lotan R. Induction of apoptosis in human non-small cell lung carcinoma cells by the novel synthetic retinoid CD437. J Cell Physiol. 1997;173(2):279-284.
Bian F, Jia L, Yu W, Liu M. Self-assembled micelles of N-phthaloylchitosan-g-polyvinylpyrrolidone for drug delivery. Carb Polym. 2009;76(3):454-459.
Jeong YI, Kang MK, Sun HS, Kang SS, Kim HW, Moon KS, et al. All-trans-retinoic acid release from core-shell type nanoparticles of poly (ε-caprolactone)/poly (ethylene glycol) diblock copolymer. Int J Pharm. 2004;273(1-2):95-107.
Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 2004;25(14):2843-2849.
Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 2013;3(6):366-376.
MacEwan SR, Callahan DJ, Chilkoti A. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine (Lond). 2010;5(5):793-806.
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18.
Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014;9(Suppl 1):51-63.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.