The silencing effect of miR-30a on ITGA4 gene expression in vitro: an approach for gene therapy

Leila Darzi, Maryam Boshtam, Laleh Shariati, Shirin Kouhpayeh, Azam Gheibi, Mina Mirian, Ilnaz Rahimmanesh, Hossein Khanahmad, Mohammad Amin Tabatabaiefar

Abstract


Integrins are adhesion molecules which play crucial roles in cell-cell and cell-extracellular matrix interactions. Very late antigen-4 or α4β1 and lymphocyte Peyer’s patch adhesion molecule-1 or α4β7, are key factors in the invasion of tumor cells and metastasis. Based on the previous reports, integrin α4 (ITGA4) is overexpressed in some immune disorders and cancers. Thus, inhibition of ITGA4 could be a therapeutic strategy. In the present study, miR-30a was selected in order to suppress ITGA4 expression. The                    ITGA4 3´UTR was amplified, cloned in the Z2827-M67-(ITGA4) plasmid and named as Z2827-M67/3´UTR. HeLa cells were divided into five groups; (1) untreated without any transfection, (2) mock with Z2827-M67/3´UTR transfection and X-tremeGENE reagent, (3) negative control with Z2827-M67/3´UTR transfection alone, (4) test with miR-30a mimic and Z2827-M67/3´UTR transfection and (5) scramble with miR-30a scramble and Z2827-M67/3´UTR transfection. The MTT assay was performed to evaluate cell survival and cytotoxicity in each group. Real-time RT-PCR was applied for the ITGA4 expression analysis. The findings of this study showed that miR-30a downregulated ITGA4 expression and had no effect on the cell survival. Due to the silencing effect of miR-30a on the ITGA4 gene expression, this agent could be considered as a potential tool for cancer and immune disorders therapy.


Keywords


Cancer; ITGA4; Metastasis; miR-30a: Non-coding RNA

Full Text:

Untitled PDF

References


Arnaout M, Mahalingam B, Xiong J-P. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 2005;21:381-410.

MB Srichai, Zent R. Integrin structure and function. In: R. Zent, A. Pozzi, editors. Cell-Extracellular Matrix Interactions In Cancer, 12th ed. New York: Springer Publishers; 2010. pp. 19-42.

Arnaout MA, Goodman SL, Xiong J-P. Structure and mechanics of integrin-based cell adhesion. Cur Opin Cell Biol. 2007;19(5):495-507.

Huttenlocher A, Horwitz AR. Integrins in cell migration. Cold Spring Harb Perspec Biol. 2011;3(9):a005074.

McIntyre TM, Prescott SM, Weyrich AS, Zimmerman GA. Cell-cell interactions: leukocyte-endothelial interactions. Curr Opin Hematol. 2003;10(2):150-158.

Beni SN, Kouhpayeh S, Hejazi Z, Hafshejani NH, Khanahmad H. Construction and characterization of recombinant HEK cell over expressing α4 integrin. Adv Pharm Bull. 2015;5(3):429-436.

Kawamoto E, Nakahashi S, Okamoto T, Imai H, Shimaoka M. Anti-integrin therapy for multiple sclerosis. Autoimmune Dis. 2012; Article ID 357101.

Young SA, McCabe KE, Bartakova A, Delaney J, Pizzo DP, Newbury RO, et al. Integrin α4 enhances metastasis and may be associated with poor prognosis in MYCN low neuroblastoma. PLoS One. 2015;10(5):e0120815

Klemke M, Weschenfelder T, Konstandin MH, Samstag Y. High affinity interaction of integrin α4β1 (VLA‐4) and vascular cell adhesion molecule 1 (VCAM‐1) enhances migration of human melanoma cells across activated endothelial cell layers. J Cell Physiol. 2007;212(2):368-374.

Barreiro O, Sanchez-Madrid F. Molecular basis of leukocyte-endothelium interactions during the inflammatory response. Rev Esp Cardiol. 2009;62(5):552-562.

Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3(3). pii: a004994.

Garmy-Susini B, Jin H, Zhu Y, Sung RJ, Hwang R, Varner J. Integrin α4 β1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J Clin Invest. 2005;115(6):1542-1551.

Engelhardt B. Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci. 2008;274(1):23-26.

Engelhardt B, Kappos L. Natalizumab: targeting α4-integrins in multiple sclerosis. Neurodegener Dis. 2008;5(1):16-22.

Chen Q, Massagué J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin Cancer Res. 2012;18(20):5520-5525.

Steinman L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov. 2005;4(6):510-518.

Zhang X, Daucher M, Armistead D, Russell R, Kottilil S. MicroRNA expression profiling in HCV-infected human hepatoma cells identifies potential anti-viral targets induced by interferon-α. PLoS One. 2013;8(2):e55733.

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215-233.

Qin P, Li L, Zhang D, Liu QL, Chen XR, Yang HY, et al. Altered microRNA expression profiles in a rat model of spina bifida. Neural Regen Res. 2016;11(3):502-507.

Omar de Faria Jr, Craig S. Moore, Timothy E. Kennedy, Jack P. Antel, Amit Bar-Or, Dhaunchak AS. MicroRNA dysregulation in multiple sclerosis. Front Genet. 2012;3:311.

Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS letters. 2005;579(26):5911-5922.

Xu X, Chen Z, Zhao X, Wang J, Ding D, Wang Z, et al. MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Bioph Res Co. 2012;421(4):640-645.

Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, et al. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol. 2012;84(3):320-330.

Gaziel-Sovran A, Segura MF, Di Micco R, Collins MK, Hanniford D, de Miera EV-S, et al. miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer cell. 2011;20(1):104-118.

Osaki M, Takeshita F, Sugimoto Y, Kosaka N, Yamamoto Y, Yoshioka Y, et al. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther. 2011;19(6):1123-1130.

Li X, Ren Z, Tang J. MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis. 2014;5(7):e1327.

Ouzounova M, Vuong T, Ancey P-B, Ferrand M, Durand G, Kelm FL-C, et al. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics. 2013;14(1):139.

Liu Z, Tu K, Liu Q. Effects of microRNA-30a on migration, invasion and prognosis of hepatocellular carcinoma. FEBS letters. 2014;588(17):3089-3097.

Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, et al. Identification of metastasis‐related microRNAs in hepatocellular carcinoma. Hepatology. 2008;47(3):897-907.

Zhong M, Bian Z, Wu Z. miR-30a suppresses cell migration and invasion through downregulation of PIK3CD in colorectal carcinoma. Cell Physiol Biochem. 2013;31(2-3):209-218.

Fu J, Xu X, Kang L, Zhou L, Wang S, Lu J, et al. miR-30a suppresses breast cancer cell proliferation and migration by targeting Eya2. Biochem Biophys Res Commun.. 2014;445(2):314-319.

Leidinger P, Keller A, Borries A, Reichrath J, Rass K, Jager SU, et al. High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer. 2010;10:262.

Bray I, Bryan K, Prenter S, Buckley PG, Foley NH, Murphy DM, et al. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One. 2009;4(11):e7850.

Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495-500.

Lewis BP, Shih I-h, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787-798.

Li X, Sui X, Zhang Y, Sun Y, Zhao Y, Zhai Y, et al. An improved calcium chloride method preparation and transformation of competent cells. Afr J Biotechnol. 2010;9(50):8549-8554.

Koistinen P, Heino J. Integrins In Cancer Cell Invasion. Madame Curie Bioscience Database. Austin (TX): Landes Bioscience; 2000-2013.

Davenport RJ, Munday JR. α4-integrin antagonism--an effective approach for the treatment of inflammatory diseases? Drug Discov Today. 2007;12(13-14):569-576.

Mirian M, Khanahmad H, Darzi L, Salehi M, Sadeghi-Aliabadi H. Oligonucleotide aptamers: potential novel molecules against viral hepatitis. Res Pharm Sci. 2017;12(2):88-98.

Idec. B. Study of natalizumab in relapsed/refractory multiple myeloma. Clinicaltrials.gov. National Library of Medicine (US). 2008–2014.

Hijazi Y, Welker H, Dorr AE, Tang JP, Blain R, Renzetti LM, et al. Pharmacokinetics, safety, and tolerability of r411, a dual α4β1‐α4β7 integrin antagonist after oral administration at single and multiple once‐daily ascending doses in healthy volunteers. J Clin Pharmacol. 2004;44(12):1368-1378.

Wolf C, Sidhu J, Otoul C, Morris DL, Cnops J, Taubel J, et al. Pharmacodynamic consequences of administration of VLA-4 antagonist CDP323 to multiple sclerosis subjects: a randomized, double-blind phase 1/2 study. PLoS One. 2013;8(3):e58438.

Sugiura T, Kageyama S, Andou A, Miyazawa T, Ejima C, Nakayama A, et al. Oral treatment with a novel small molecule alpha 4 integrin antagonist, AJM300, prevents the development of experimental colitis in mice. J Crohn's Colitis. 2013;7(11):e533-e42.

Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, Zollner H, Munding J, Klein-Scory S, et al. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis. 2012;33(4):732-739.

Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res. 2011;39(16):6845-6853.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.