Preparation and in vitro-in vivo evaluation of acyclovir floating tablets

Rahim Bahri-Najafi, Abolfazl Mostafavi, Naser Tavakoli, Somayeh Taymouri, Mohammad-Mehdi Shahraki

Abstract


In the current study, floating dosage form containing acyclovir was developed to increase its oral bioavailability. Effervescent floating tablets containing 200 mg acyclovir were prepared by direct compression method with three different rate controlling polymers including Hydroxypropyl methylcellulose K4M, Carbapol 934, and Polyvinylpyrrolidone. Optimized formulation showed good floating properties and in vitro drug release characteristics with mean dissolution time and dissolution efficacy of about 4.76 h and 54.33%, respectively. X-ray radiography exhibited that the tablet would reside in the stomach for about 5 ± 0.7 h. After oral administration of floating tablet containing 200 mg acyclovir, the Cmax, Tmax, and AUC0–∞ of optimized gastroretentive formulation were found to be 551 ± 141 ng/mL, 2.75 ± 0.25 h and 3761 ± 909.6 ng/mL/h, respectively.


Keywords


Acyclovir; Floating tablet; HPLC; X-ray radiography

Full Text:

PDF

References


Fukuda M, Peppas NA, McGinity JW. Floating hot-melt extruded tablets for gastroretentive controlled drug release system. J Control Release. 2006;115(2):121-129.

Khan F, Ibn Razzak SM, Khan ZR, Azad MA, Chowdhury JA, Reza S. Theophylline loaded gastroretentive floating tablets based on hydrophilic polymers: preparation and in vitro evaluation. Pak J Pharm Sci. 2009;22(2):155-161.

Tamizharasi S, Rathi V, Rathi JC. Floating drug delivery system. Syst Rev Pharm. 2011;2(1):19-29.

Wanjari D. A review on floating drug delivery system. Int J Bioassays. 2014;3(8):10.21746.

Wagstaff AJ, Faulds D, Goa KL. Acyclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1994;47(1):153-205.

Tavakoli N, Varshosaz J, Dorkhoosh F, Motaghi S, Tamadon L. Development and evaluation of a monolithic floating drug delivery system for acyclovir. Chem Pharm Bull (Tokyo). 2012;60(2):172-177.

Kharia AA, Hiremath SN, Singhai AK, Omray LK, Jain SK. Design and optimization of floating drug delivery system of acyclovir. Indian J Pharm Sci. 2010;72(5):599-606.

Trivedi P, Verma A, Garud N. Preparation and characterization of aceclofenac microspheres. Asian J pharm. 2008;2(2):DOI: 10.4103/0973-8398.42498.

Jain CP, Naruka PS. Formulation and evaluation of fast dissolving tablets of valsartan. Int J Pharm Pharm Sci. 2009;1(1):219-226.

United States Pharmacopoeia 26th ed. Springer: Twin Brook Park Wag, United States. pp. 1323-1607.

Vinay W, Yallagatti MS, Varma MM. Formulation, development and evaluation of novel floating tablet of metoclopramide hydrochloride. J Pharm Res. 2011;4(10):3678.

Dorozynski P, Jachowicz R, Kulinowski P, Kwiecinski S, Szybinski K, Skorka T, et al. The macromolecular polymers for the preparation of hydrodynamically balanced systems--methods of evaluation. Drug Dev Ind Pharm. 2004;30(9): 947-957.

Basak SC, Rahman J, Ramalingam M. Design and in vitro testing of a floatable gastroretentive tablet of metformin hydrochloride. Pharmazie. 2007;62(2):145-148.

Emami J. In vitro-in vivo correlation: from theory to applications. J Pharm Pharm Sci. 2006;9(2): 169-189.

Chatzizaharia KA, Hatziavramidis DT. Dissolution efficiency and design space for an oral pharmaceutical product in tablet form. Ind Eng Chem Res. 2015;54(24):6305-6310.

Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217-223.

Emami J ,Bazargan N ,Ajami A . HPLC determination of acyclovir in human serum and its application in bioavalibility studies.2009;4(1): 47-54.

Jiménez-Martínez I, Quirino-Barreda T, Villafuerte-Robles L. Sustained delivery of captopril from floating matrix tablets. Int J Pharm. 2008;362(1-2):37-43.

Javadzadeh Y, Hamedeyazdan S, Adibkia K, Kiafar F, Zarrintan MH, Barzegar-Jalali M. Evaluation of drug release kinetics and physico-chemical characteristics of metronidazole floating beads based on calcium silicate and gas-forming agents. Pharm Dev Technol. 2010;15(4):329-338.

Sermkaew N, Wiwattanawongsa K, Ketjinda W, Wiwattanapatapee R. Development, characterization and permeability assessment based on Caco-2 monolayers of self-microemulsifying floating tablets of tetrahydrocurcumin. AAPS PharmSciTech. 2013;14(1):321-331.

Li S, Lin S, Daggy BP, Mirchandani HL, Chien YW. Effect of HPMC and Carbopol on the release and floating properties of gastric floating drug delivery system using factorial design. Int J Pharm. 2003;253(1-2):13-22.

Mostafavi A, Emami J, Varshosaz J, Davies NM, Rezazadeh M. Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: Pharmacokinetic characterization in healthy human volunteers. Int J Pharm. 2011;409(1-2):128-136.

Deshpande AA, Shah NH, Rhodes CT, Malick W. Development of a novel controlled-release system for gastric retention. Pharm Res. 1997;14(6):815-819.

Rahman Z, Ali M, Khar R. Design and evaluation of bilayer floating tablet of Captopril. Acta Pharm. 2006;56(1):49-57.

Siddam H, Kotla NG, Maddiboyina B, Singh S, Sunnapu O, Kumar A, et al. Formulation and evaluation of atenolol floating bioadhesive system using optimized polymer blends. Int J Pharm Investig. 2016;6(2):116-122.

Jankowski A, Jankowska AL, Lamparczyk H. Determination and pharmacokinetics of acyclovir after ingestion of suspension form. J Pharm Biomed Anal. 1998;18(1-2):249-254.

Hu L, Li L, Yang X, Liu W, Yang J, Jia Y, Shang C, Xu H. Floating matrix dosage form for dextromethorphan hydrobromide based on gas forming technique: in vitro and in vivo evaluation in healthy volunteers. Eur J Pharm Sci. 2011;42(1-2):99-105.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.