The effects of technical and compositional variables on the size and release profile of bovine serum albumin from PLGA based particulate systems

B Taghipour, M Yakhchali, I Haririan, AM Tamaddon, S Mohammadi Samani

Abstract


Double emulsion solvent evaporation technique is one of the most attractive methods used to prepare micro and nanoparticles in pharmaceutical areas of interest, but because of the effects of many formulation factors on the size and release behavior of the fabricated particles, optimization of the formulation factors is needed. In this study various parameters including technical and compositional variables were considered to achieve an optimized formulation with desire characteristics especially size and the release profiles, using high shear homogenizer. In this regard, bovine serum albumin (BSA) was used as the model protein and double emulsion was formed with the addition of Tween 80 and Span 80 as surfactants for inner aqueous phase and oil phase, respectively. Hydroxypropyl beta cyclodextrin was used as protein stabilizer. After optimization steps, composite nanoparticles (core-shell) were made based on optimized formulation by hyaluronic acid as shell and poly lactic-co-glycolic acid (PLGA) as core material. Formulation of the BSA loaded PLGA nanoparticles using core shell strategy improved the release pattern of the BSA and diminished burst release. The final composite nanoparticles had the particle size of about 160 nm and 70 % of the loaded BSA was released during 14 days and the release data was better fitted to zero order release kinetics.


Full Text:

PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.