The effect of different media composition and temperatures on the production of recombinant human growth hormone by CHO cells
Abstract
Cell lines derived from mammalian are dominant systems for the production of recombinant therapeutic proteins because of their capacity for correct protein folding, assembly and post-translational modification. In the search of an efficient method for the production of a recombinant protein using animal cell culture, we investigated the effects of different treatment including fetal calf serum concentration, glycerol and culture temperature on a Chinese hamster ovary (CHO) cell line on the production of recombinant human growth hormone (rhGH) and recombinant Chinese hamster ovary (rCHO) viability. The GH production was assessed using ELISA and western blotting methods and cell viability was determined by flow cytometry. The production of recombinant protein increased by 2-fold when stimulatory chemical such as glycerol was added in two stages, first cells were cultured without glycerol for a period of time in order to obtain enough cell density and then glycerol was added to achieve high specific productivity.. Moreover, glycerol addition increased cell viability. Low culture temperature (below 37ºC) led to enhanced cellular productivity of the rhGH by 3-fold but decreased cell viability. These findings indicate that quite simple factors such as culture temperature and addition of simple chemicals may lead to the improvement of industrial process for the production of recombinant proteins such as rhGH.
Full Text:
PDFRefbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.