Experimental and theoretical evaluation of antioxidant capacity of flavone glycosides extracted from Cleome turkmena Bobrov

Mehrdad Mohammadpour Dehkordi, Elham Elahi, Samin Mousavi, Sara Abdeyazdan, Mustafa Ghanadian

Abstract


Background and purpose: In traditional medicine, species of Cleome (known in Persian as alaf-e-mar) are used to treat wounds and earaches, as well as for their antihelmintic, carminative, and anti-arthritic properties. Flavonoids, among the most significant phytochemicals in this family, hold pharmacological importance, mainly due to their ability to scavenge free radicals.

Experimental approach: Cleome turkmena Bobrov was collected and extracted in methanol. Compounds were isolated by open-column and size-exclusion chromatography. Free radical scavenging ability and reduction potential of isolated flavonols along with allantoin were determined according to the scavenging of the DPPH (diphenyl-picrylhydrazyl) radical and reducing power of Fe3+ assays. A theoretical study of their antioxidant capacity was done using density functional theory calculations.

Findings/Results: Allantoin (compound 1), 2 known flavonol glycosides (compounds 2, 4), and 1 undescribed flavonol glycoside (compound 3) were isolated, and their structures were identified using different spectroscopic techniques for the first time in this plant. Among them, compound 4, quercitin-3-O-β-D-glucoside-7-O-α-L-rhamnoside, exhibited the best free radical scavenging and reducing power effects compared to the standards.

Conclusion and implications: All flavone glycosides isolated from Cleome turkmena Bobrov showed favorable DPPH radical scavenging and Fe3+ reducing power.

 

 


Keywords


Cleome turkmena Bobrov; Density functional theory; Flavonoids; Quercetin; Radical scavenging.

Full Text:

Untitled PDF

References


Karimi H. A dictionary of Iran’s vegetation plants. Tehran: Parcham Publisher; 2002. pp. 3-6.

Adhikari PP, Paul SB. Medicinally important plant Cleome gynandra: a phytochemical and pharmacological explanation. Asian J Pharm Clin Res. 2018;11(1):21-29. DOI: 10.22159/ajpcr.2018.v11i1.22037.

Chand J, Panda SR, Jain S, Murty USN, Das AM, Kumar GJ, et al. Phytochemistry and polypharmacology of cleome species: a comprehensive Ethnopharmacological review of the medicinal plants. J Ethnopharmacol. 2022;282:114600.DOI: 10.1016/j.jep.2021.114600.

Mali RG. Cleome viscosa (wild mustard): a review on ethnobotany, phytochemistry, and pharmacology. Pharm Biol. 2010;48(1):105-112.DOI: 10.3109/13880200903114209.

Jinazali H, Mtimuni B, Chilembwe E. Nutrient composition of cat’s whiskers (Cleome gynandra L.) from different agro ecological zones in Malawi. Afr J Food Sci. 2017;11(1):24-29. DOI: 10.5897/AJFS2016.1478.

Abdel Motaal A, Salem HH, Almaghaslah D, Alsayari A, Bin Muhsinah A, Alfaifi MY,et al. Flavonol glycosides: in vitro inhibition of DPPIV, aldose reductase and combating oxidative stress are potential mechanisms for mediating the antidiabetic activity of Cleome droserifolia. Molecules. 2020;25(24):5864,1-13.DOI: 10.3390/molecules25245864

Singh H, Mishra A, Mishra AK. The chemistry and pharmacology of Cleome genus: a review. Biomed Pharmacother. 2018;101:37-48.DOI: 10.1016/j.biopha.2018.02.053.

Moyo M, Amoo SO, Aremu AO, Gruz J, Šubrtová M, Jarošová M, et al. Determination of mineral constituents, phytochemicals and antioxidant qualities of Cleome gynandra, compared to Brassica oleracea and Beta vulgaris. Front Chem. 2018;5:128,1-9.DOI: 10.3389/fchem.2017.00128.

Nguyen TP, Tran CL, Vuong CH, Do THT, Le TD, Mai DT, et al. Flavonoids with hepatoprotective activity from the leaves of Cleome viscosa L. Nat Prod Res. 2017;31(22):2587-2592. DOI: 10.1080/14786419.2017.1283497.

Aboushoer MI, Fathy HM, Abdel-Kader MS, Goetz G, Omar AA. Terpenes and flavonoids from an Egyptian collection of Cleome droserifolia. Nat Prod Res. 2010;24(7):687-696. DOI: 10.1080/14786410903292433.

Xiao J. Dietary flavonoid aglycones and their glycosides: which show better biological significance? Crit Rev Food Sci Nutr. 2017;57(9):1874-1905.DOI: 10.1080/10408398.2015.1032400.

Hollman PCH, Geelen A, Kromhout D. Dietary flavonol intake may lower stroke risk in men and women. J Nutr. 2010;140(3):600-604. DOI: 10.3945/jn.109.116632.

Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011;11(4):298-344.DOI: 10.2174/138955711795305335.

Cizmarova B, Hubkova B, Birkova A. Quercetin as an effective antioxidant against superoxide radical. Funct Food Sci. 2023;3(3):15-25. DOI: 10.31989/ffs.v3i3.1076.

Shahbaz M, Imran M, Alsagaby SA, Naeem H, Al Abdulmonem W, Hussain M, et al. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. Int J Food Prop. 2023;26(1):1140-1166. DOI: 10.1080/10942912.2023.2205040.

Agraharam G, Girigoswami A, Girigoswami K. Myricetin: a multifunctional flavonol in biomedicine. Curr Pharmacol Rep. 2022;8(1):48-61.DOI: 10.1007/s40495-021-00269-2.

Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21(3):361-370. DOI: 10.1093/carcin/21.3.361.

Bartolotti LJ, Flurchick K. An introduction to density functional theory. In: Lipkowitz KB, Boyd DB, editors. Reviews in computational chemistry. Vol 7. New York: Wiley‐VCH, Inc., 1996. pp. 187-216. DOI: 10.1002/9780470125847.ch4.

Mahmoudi S, Mohammadpour Dehkordi M, Asgarshamsi MH. Density functional theory studies of the antioxidants- a review. J Mol Model. 2021;27(9):271,1-14. DOI: 10.1007/s00894-021-04891-1.

Fassihi A, Hasanzadeh F, Movahedian Attar A, Saghaie L, Mohammadpour M. Synthesis and evaluation of antioxidant activity of some novel hydroxypyridinone derivatives: a DFT approach for explanation of their radical scavenging activity. Res Pharm Sci. 2020;15(6):515-528. DOI: 10.4103/1735-5362.301336.

Nazifi SMR, Asgharshamsi MH, Dehkordi MM, Zborowski KK. Antioxidant properties of Aloe vera components: a DFT theoretical evaluation. Free Radic Res. 2019;53(8):922-931. DOI: 10.1080/10715762.2019.1648798.

Khuntia A, Martorell M, Ilango K, Bungau SG, Radu AF, Behl T, et al. Theoretical evaluation of Cleome species' bioactive compounds and therapeutic potential: a literature review. Biomed Pharmacother. 2022;151:113161.DOI: 10.1016/j.biopha.2022.113161.

Abdullah W, Elsayed WM, Abdelshafeek KA, Nazif NM, Singab ANB. Chemical constituents and biological activities of Cleome genus: a brief review. Int J Pharmacogn Phytochem Res. 2016;8(5):777-787.

Pasdaran A, Delazar A, Ayatollahi SA, Pasdaran A. Chemical composition and biological activities of methanolic extract of Scrophularia oxysepala Boiss. Iran J Pharm Res. 2017;16(1):338-346. PMID: 28496487.

Salmanian S, Sadeghi Mahoonak AR, Alami M, Ghorbani M. Phenolic content, antiradical, antioxidant, and antibacterial properties of hawthorn (Crataegus elbursensis) seed and pulp extract. J Agr Sci Tech. 2014;16(2):343-354.

Dehkordi MM, Asgarshamsi MH, Fassihi A, Zborowski KK. A comparative DFT study on the antioxidant activity of some novel 3‐hydroxypyridine‐4‐one derivatives. Chem Biodiver. 2022;19(3):e202100703. DOI: 10.1002/cbdv.202100703.

Mittal A, Kakkar R. The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, toward various ROS: a DFT thermodynamic study. Free Radic Res. 2020;54(10):777-786. DOI: 10.1080/10715762.2020.1849670.

Chen Z, Bertin R, Froldi G. EC50 estimation of antioxidant activity in DPPH· assay using several statistical programs. Food Chem. 2013;138(1):414-420.DOI: 10.1016/j.foodchem.2012.11.001.

Liu S, Liu M, Wu H, Wang Q, Li W, Huang S, et al. A new isomer and other metabolites isolated from Alternaria alternata. Chem Nat Compd. 2021;57:844-847. DOI: 10.1007/s10600-021-03495-8.

Foo LY, Lu Y, Molan AL, Woodfield DR, McNabb WC. The phenols and prodelphinidins of white clover flowers. Phytochemistry. 2000;54(5):539-548. DOI: 10.1016/S0031-9422(00)00124-2.

Chawla R, Arora R, Sagar RK, Singh S, Puri SC, Kumar R, et al. 3-O-beta-D-Galactopyranoside of quercetin as an active principle from high altitude Podophyllum hexandrum and evaluation of its radioprotective properties. Z Naturforsch C J Biosci. 2005;60(9-10):728-738. DOI: 10.1515/znc-2005-9-1012.

Chang L, Shao Q, Xi X, Chu Q, Wei Y. Separation of four flavonol glycosides from Solanum rostratum Dunal using aqueous two-phase flotation followed by preparative high-performance liquid chromatography. J Sep Sci. 2017;40(3):804-812. DOI: 10.1002/jssc.201600922.

Yang B, Halttunen T, Raimo O, Price K, Kallio H. Flavonol glycosides in wild and cultivated berries of three major subspecies of Hippophaë rhamnoides and changes during harvesting period. Food Chem. 2009;115(2):657-664. DOI: 10.1016/j.foodchem.2008.12.073.

Rösch D, Krumbein A, Mügge C, Kroh LW. Structural investigations of flavonol glycosides from sea buckthorn (Hippophaë rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS(n). J Agric Food Chem. 2004;52(13):4039-4046. DOI: 10.1021/jf0306791.

Fang R, Veitch NC, Kite GC, Porter EA, Simmonds MSJ. Enhanced profiling of flavonol glycosides in the fruits of sea buckthorn (Hippophae rhamnoides). J Agric Food Chem. 2013;61(16): 3868-3875.DOI: 10.1021/jf304604v.

Medjahed Z, Chaher-Bazizi N, Atmani-Kilani D, Ahmane N, Ruiz-Larrea MB, Sanz JIR, et al. A novel flavonol glycoside and six derivatives of quercetin and kaempferol from Clematis flammula with antioxidant and anticancer potentials. Fitoterapia. 2023;170:105642. DOI: 10.1016/j.fitote.2023.105642.

Alaniya MD, Sutiashvili MG, Skhirtladze AV, Getia MZ, Jgerenaia GA, Mskhiladze LV. Phenolic compounds from aerial parts of Ononis arvensis.

Chem Nat Compd. 2023;59:783-784.DOI: 10.1007/s10600-023-04111-7

Wang X, Yu R. Chemical compositions of Lepidium latifolium. Chem Nat Compd. 2024;60(1). DOI: 10.1007/s10600-024-04276-9.

Foti MC. Antioxidant properties of phenols. J Pharm Pharmacol. 2007;59(12):1673-1685.DOI: 10.1211/jpp.59.12.0010.

Yang D, Wang T, Long M, Li P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. 2020;2020:8825387,1-13.DOI: 10.1155/2020/8825387.

Mbikay M, Sirois F, Simoes S, Mayne J, Chrétien M. Quercetin-3-glucoside increases low-density lipoprotein receptor (LDLR) expression, attenuates proprotein convertase subtilisin/kexin 9 (PCSK9) secretion, and stimulates LDL uptake by Huh7 human hepatocytes in culture. FEBS Open Bio. 2014;4:755-762. DOI: 10.1016/j.fob.2014.08.003.

Odbayar TO, Kimura T, Tsushida T, Ide T. Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver. Mol Cell Biochem. 2009;325(1-2):121-130. DOI: 10.1007/s11010-009-0026-4.

Wang J, Qian X, Gao Q, Lv C, Xu J, Jin H, et al. Quercetin increases the antioxidant capacity of the ovary in menopausal rats and in ovarian granulosa cell culture in vitro. J Ovarian Res. 2018;11(1): 51,1-11.DOI: 10.1186/s13048-018-0421-0.

Asgarshamsi MH, Fassihi A, Hassanzadeh F, Saghaei L, Movahedian Attar A, Mohammad-Beigi H. Synthesis, antioxidant activity, and density functional theory study of some novel 4-[(benzo [d] thiazol-2-ylimino) methyl] phenol derivatives: a comparative approach for the explanation of their radical scavenging activities. Res Pharm Sci. 2020;16(1):35-47. DOI: 10.4103/1735-5362.305187.

Mohammadpour M, Sadeghi A, Fassihi A, Saghaei L, Movahedian A, Rostami M. Synthesis and antioxidant evaluation of some novel ortho-hydroxypyridine-4-one iron chelators. Res Pharm Sci. 2012;7(3):171-179. PMID: 23181095.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.