Development of a recombinant biosimilar single-chain variable fragment antibody targeting human estrogen receptor α36

Soodabeh Shafiee, Sedighe Kolivand, Neda Jalili, Mohammad Abedini, Mahboubeh Navabi, Yeganeh Talebkhan, Rezvan Esmaeili, Mohadeseh Haji Abdolvahab

Abstract


Background and purpose: The estrogen receptor alpha-36 (ER-α36) is an alternative splice variant of classical ER-α66 and is abundantly present in both ER-α66-positive and ER-α66-negative breast tumor cells. Given its clinical relevance, developing targeted strategies against this isoform is of particular significance to breast cancer research. This study aimed to develop an ER-α36-specific recombinant biosimilar single-chain variable fragment (scFv) antibody.

Experimental approach: The primary amino acid sequence of the anti-ER-α36 scFv was retrieved from patent US20110311517A1. An expression cassette harboring the scFv coding sequence was designed and incorporated into the backbone of the pET‑28a(+) expression vector for recombinant expression in Escherichia coli (E. coli) BL21(DE3) cells. Expression conditions were then optimized, and the protein was purified using immobilized metal affinity chromatography. The binding of the purified scFv to ER-α36-expressing breast cancer cells was assessed using enzyme-linked immunosorbent assay (ELISA) and flow cytometry.

Findings/Results: Characterization using sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting experiments revealed a molecular weight of 29 kDa for the expressed scFv antibody. Relative quantification revealed the highest scFv protein expression level 16 h after induction with 1 mM isopropyl β-D-1-thiogalactopyranoside at 25 °C. Flow cytometry and ELISA assays demonstrated specific binding of the scFv to ER-α36 protein on MDA-MB-231 breast cancer cells, while no interaction was detected with ER-α36-negative MCF-10A normal mammary epithelial cell line.

Conclusion/implications: The anti-ER-α36 scFv antibody fragment was successfully expressed using the E. coli expression system, and the purified protein was able to specifically recognize and bind to ER-α36-expressing human breast cancer cells.

 


Keywords


Antibody fragment; Breast cancer; Estrogen receptor; Recombinant; scFv.

Full Text:

PDF

References


Alismail H. Review: merging from traditional to potential novel breast cancer biomarkers. J King Saud Univ Sci. 2024;36:103551,1-8. DOI: 10.1016/j.jksus.2024.103551.

Pal M, Muinao T, Boruah HPD, Mahindroo N. Current advances in prognostic and diagnostic biomarkers for solid cancers: detection techniques and future challenges. Biomed Pharmacother. 2022;146:112488,1-19. DOI: 10.1016/j.biopha.2021.112488.

Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50(1):33,1-23. DOI: 10.1186/s40659-017-0140-9.

Al-Kabariti AY, Abbas MA. Progress in the understanding of estrogen receptor alpha signaling in triple-negative breast cancer: reactivation of silenced ER-α and signaling through ER-α36. Mol Cancer Res. 2023;21(11):1123-1138. DOI: 10.1158/1541-7786.MCR-23-0321.

Pagano MT, Ortona E, Dupuis ML. A role for estrogen receptor alpha36 in cancer progression. Front Endocrinol (Lausanne). 2020;11:506,1-7. DOI: 10.3389/fendo.2020.00506.

Wang ZY, Yin L. Estrogen receptor alpha-36 (ER-α36): a new player in human breast cancer. Mol Cell Endocrinol. 2015;418 Pt 3:193-206. DOI: 10.1016/j.mce.2015.04.017.

Gu Y, Chen T, López E, Wu W, Wang X, Cao J, et al. The therapeutic target of estrogen receptor-alpha36 in estrogen-dependent tumors. J Transl Med. 2014;12:16,1-12. DOI: 10.1186/1479-5876-12-16.

Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen En Henegouwen PMP. Targeting tumors with nanobodies for cancer imaging and therapy. J Control Release. 2013;172(3):607-617. DOI: 10.1016/j.jconrel.2013.08.298.

Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: tumor treatment strategies. Signal Transduct Target Ther. 2024;9(1):175,1-44. DOI: 10.1038/s41392-024-01856-7.

Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, et al. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther. 2024;9(1):132,1-86. DOI: 10.1038/s41392-024-01823-2.

Miller KR, Koide A, Leung B, Fitzsimmons J, Yoder B, Yuan H, et al. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS One. 2012;7(8):e43746,1-14. DOI: 10.1371/journal.pone.0043746.

Bates A, Power CA. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies (Basel). 2019;8(2):28,1-31.DOI: 10.3390/antib8020028.

Ahmad ZA, Yeap SK, Ali AM, Ho WY, Mohamed Alitheen NB, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:980250,1-15. DOI: 10.1155/2012/980250.

Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, et al. Single-chain fragment variable: recent progress in cancer diagnosis and therapy. Cancers (Basel). 2022;14(17):4206,1-26. DOI: 10.3390/cancers14174206.

Rodríguez-Nava C, Ortuño-Pineda C, Illades-Aguiar B, Flores-Alfaro E, Leyva-Vázquez MA, Parra-Rojas I, et al. Mechanisms of action and limitations of monoclonal antibodies and single-chain fragment variable (scFv) in the treatment of cancer. Biomedicines. 2023;11(6):1610,1-25. DOI: 10.3390/biomedicines11061610.

Cui X, Vasylieva N, Shen D, Barnych B, Yang J, He Q, et al. Biotinylated single-chain variable fragment-based enzyme-linked immunosorbent assay for glycocholic acid. Analyst. 2018;143(9):2057-2065. DOI: 10.1039/C7AN02024D.

Yakushiji H, Kobayashi K, Takenaka F, Kishi Y, Shinohara M, Akehi M, et al. Novel single‐chain variant of antibody against mesothelin established by phage library. Cancer Sci. 2019;110(9):2722-2733. DOI: 10.1111/cas.14150.

Lu Y, Huang J, Li F, Wang Y, Ding M, Zhang J, et al. EGFR-specific single-chain variable fragment antibody-conjugated Fe3O4/Au nanoparticles as an active MRI contrast agent for NSCLC. MAGMA. 2021;34(4):581-591. DOI: 10.1007/s10334-021-00916-1.

Duranti C, Carraresi L, Sette A, Stefanini M, Lottini T, Crescioli S, et al. Generation and characterization of novel recombinant anti-hERG1 scFv antibodies for cancer molecular imaging. Oncotarget. 2018;9(79):34972-34989. DOI: 10.18632/oncotarget.26200.

Mazzocco C, Fracasso G, Germain-Genevois C, Dugot-Senant N, Figini M, Colombatti M, et al. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe. Sci Rep. 2016;6:23314,1-10. DOI: 10.1038/srep23314.

Mirzaei R, Shafiee S, Vafaei R, Salehi M, Jalili N, Nazerian Z, et al. Production of novel recombinant anti-EpCAM antibody as targeted therapy for breast cancer. Int Immunopharmacol. 2023;122:110656.DOI: 10.1016/j.intimp.2023.110656.

Li J, Meng K, inventors; Antibodies and methods for treating estrogen receptor-associated diseases. USA. 2011. Pub. No: US 2011/0311517 A1. Patent Application Publication. Available on https://patents.google.com/patent/US20110311517A1/en.

Yaghoubi S, Gharibi T, Karimi MH, Sadeqi Nezhad M, Seifalian A, Tavakkol R, et al. Development and biological assessment of MMAE-trastuzumab antibody-drug conjugates (ADCs). Breast Cancer. 2021;28(1):216-225. DOI: 10.1007/s12282-020-01153-5.

Salehinia J, Mir Mohammad Sadeghi H, Abedi D, Akbari V. Improvement of solubility and refolding of an anti-human epidermal growth factor receptor 2 single-chain antibody fragment inclusion bodies. Res Pharm Sci. 2018;13(6):566-574. DOI: 10.4103/1735-5362.245968.

Greene GL, Nolan C, Engler JP, Jensen EV. Monoclonal antibodies to human estrogen receptor. Proc Natl Acad Sci U S A. 1980;77(9):5115-5119.DOI: 10.1073/pnas.77.9.5115.

Hassanzadeh Makoui M, Mobini M, Khoshnoodi J, Judaki MA, Bahadori T, Ahmadi Zare H, et al. Generation and characterization of novel diagnostic mouse monoclonal antibodies against human estrogen receptor alpha and progesterone receptor. Asian Pac J Cancer Prev. 2022;23(9):2999-3007.DOI: 10.31557/apjcp.2022.23.9.2999.

Bhat S, Senthamizh R, Kedare MM, Patra S. Revolutionizing recombinant protein production in prokaryotic platforms- methodologies and advances. Enzyme Microb Technol. 2026;193:110778. DOI: 10.1016/j.enzmictec.2025.110778.

Ghaderi H, Alipour A, Mohammadi Zadeh Holagh A, Kazemi lomedasht F, Abdollahpour-Alitappeh M, Kaghazian H, et al. Recombinant antibody fragment therapeutics: current status and future prospects of scFv, nanobody, and mimotopes. J Drug Deliv Sci Technol. 2023;89(1):105009. DOI: 10.1016/j.jddst.2023.105009.

Gezehagn Kussia G, Tessema TS. The potential of single‐chain variable fragment antibody: role in future therapeutic and diagnostic biologics. J Immunol Res. 2024;2024:1804038,1-24. DOI: 10.1155/2024/1804038.

Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem. 2019;26(3):396-426. DOI: 10.2174/0929867324666170817152554.

Zahid R, Wang J, Cai Z, Ishtiaq A, Liu M, Ma D, et al. Single-chain fragment variable, a new theranostic approach for cardiovascular diseases. Front Immunol. 2024;15:1443290,1-16. DOI: 10.3389/fimmu.2024.1443290.

Gholizadeh M, Abdoli S, Mansoori S, Arashkia A, Riazi-Rad F, Hamidieh AA, et al. Expression and functional characterization of an anti-CD22 scFv targeting B-cell malignancies. Res Pharm Sci. 2025;20(3):373-391. DOI: 10.4103/rps.rps_248_24.

Behravan A, Hashemi A. Statistical optimization of culture conditions for expression of recombinant humanized anti-EpCAM single-chain antibody using response surface methodology. Res Pharm Sci. 2021;16(2):153-164. DOI: 10.4103/1735-5362.310522.

Yang Z, Zhang L, Zhang Y, Zhang T, Feng Y, Lu X, et al. Highly efficient production of soluble proteins from insoluble inclusion bodies by a two-step-denaturing and refolding method. PLoS One. 2011;6(7):e22981,1-8. DOI: 10.1371/journal.pone.0022981.

Mahgoub EO, Bolad AK. Construction, expression and characterisation of a single-chain variable fragment in the Escherichia coli periplasmic that recognise MCF-7 breast cancer cell line. J Cancer Res Ther. 2014;10(2):265-273. DOI: 10.4103/0973-1482.136551.

Kim HI, Kim J, Kim H, Lee H, Yoon YS, Hwang SW, et al. Biomolecular imaging of colorectal tumor lesions using a FITC-labeled scFv-Cκ fragment antibody. Sci Rep. 2021;11(1):17155,1-11. DOI: 10.1038/s41598-021-96281-z.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.