Dill extract attenuates liver fibrosis and steatohepatitis in obese rats via modulating TGF-β1 signaling and collagen accumulation
Abstract
Background and purpose: Dill (Anethum graveolens) is an herbal plant from the Apiaceae family often used as an effective remedy for several ailments. This study aimed to investigate the potential protective effect of dill against the development of non-alcoholic fatty liver disease in obese rats.
Experimental approach: For 12 weeks, rats were fed a high-fat diet (HFD) to induce obesity. In the treatment group, the extract of dill leaves (100 mg/kg) was administered by gavage. Then, blood and liver samples were harvested for further investigations.
Findings/Results: Feeding HFD caused increased body mass index, abdominal circumference, adiposity index, weight gain, serum glucose, lipids, insulin, leptin, and insulin resistance. HFD-fed rats also showed increased hepatic triglycerides, fatty acid synthase, cytochrome P2E1, hydrogen peroxide, malondialdehyde, serum marker enzymes (AST, ALT, ALP, and GGT), and liver weight, with decreased antioxidants including superoxide dismutase, catalase, and glutathione. Besides, a significant elevation of hepatic interleukins 1β and 6, tumor necrosis factor-α, nuclear factor-kappa B, Kupfer cell markers (CD68 and CD163), fibronectin, and collagen type 1, along with an increase of transforming growth factor-β1 expression, was observed. Histological changes presented by hepatocytes, including ballooning, inflammatory cell aggregation, and deposition of collagen fibers, have also been detected. Co-administration of dill with HFD succeeded in reducing weight gain, hepatic triglyceride accumulation, oxidative reactions, inflammation, fibrosis, and liver structural injury.
Conclusion and implications: Dill extract could be approved as a promising therapeutic approach with multiple benefits for the management of obesity and associated steatohepatitis.
Keywords
Full Text:
PDFReferences
Mitra S, De A, Chowdhury A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl Gastroenterol Hepatol. 2020;5:16,1-17.DOI: 10.21037/tgh.2019.09.08.
Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology. 2020;158(7):1851-1864.DOI: 10.1053/j.gastro.2020.01.052.
Legaki AI, Moustakas II, Sikorska M, Papadopoulos G, Velliou RI, Chatzigeorgiou A. Hepatocyte mitochondrial dynamics and bioenergetics in obesity-related non-alcoholic fatty liver disease. Curr Obes Rep. 2022;11(3):126-143.DOI: 10.1007/s13679-022-00473-1.
Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Front Med (Lausanne). 2021;8:595371,1-14.DOI: 10.3389/fmed.2021.595371.
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother. 2021;137:111315,1-13.DOI: 10.1016/j.biopha.2021.111315.
Nili-Ahmadabadi A, Akbari Z, Ahmadimoghaddam D, Larki-Harchegani A. The role of ghrelin and tumor necrosis factor alpha in diazinon-induced dyslipidemia: insights into energy balance regulation. Pestic Biochem Physiol. 2019;157:138-142.DOI: 10.1016/j.pestbp.2019.03.013.
Akhtar DH, Iqbal U, Vazquez-Montesino LM, Dennis BB, Ahmed A. Pathogenesis of insulin resistance and atherogenic dyslipidemia in nonalcoholic fatty liver disease. J Clin Transl Hepatol. 2019;7(4):362-370.DOI: 10.14218/JCTH.2019.00028.
Borén J, Taskinen MR, Olofsson SO, Levin M. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med. 2013;274(1):25-40.DOI: 10.1111/joim.12071.
Jitrukthai S, Kositamongkol C, Boonchai P, Mepramoon E, Ariyakunaphan P, Nimitpunya P, et al. Long-term outcomes associated with NAFLD, ASCVD, and all-cause mortality of patients with metabolic syndrome. J Clin Med. 2022;11(15):4627,1-13.DOI: 10.3390/jcm11154627.
Polyzos SA, Goulis DG, Giouleme O, Germanidis GS, Goulas A. Anti-obesity medications for the management of nonalcoholic fatty liver disease. Curr Obes Rep. 2022;11(3):166-179.DOI: 10.1007/s13679-022-00474-0.
Xu Y, Guo W, Zhang C, Chen F, Tan HY, Li S, et al. Herbal medicine in the treatment of non-alcoholic fatty liver diseases-efficacy, action mechanism, and clinical application. Front Pharmacol. 2020;11: 601,1-19.DOI: 10.3389/fphar.2020.00601.
Sokolik OP, Prozorova GO. Current view on the problem of treating fibrocystic breast disease in terms of herbal medicine. Res Results Pharmacol. 2022;8(2):77-85. DOI: 10.3897/rrpharmacology.8.79286.
Al-Oqail MM, Al-Sheddi ES, Farshori NN, Al-Massarani SM, Alsultan EN, Ahmad J, et al. In vitro anticancer potential of dill seed extract against human hepatocellular carcinoma (Huh-7) cells. J King Saud Univ Sci. 2024;36(9):103390,1-7.DOI: 10.1016/j.jksus.2024.103390
Benlembarek K, Lograda T, Ramdani M, Figueredo G, Chalard P. Chemical composition and biological activities of Anethum graveolens L. essential oil from Algeria. J Essent Oil-Bear Plants. 2022;25(4):728-740.DOI: 10.1080/0972060X.2022.2113149.
Goodarzi MT, Khodadadi I, Tavilani H, Oshaghi EA. The role of Anethum graveolens L. (Dill) in the management of diabetes. J Trop Med. 2016;2016:1098916,1-11.DOI: 10.1155/2016/1098916.
Talreja SB, Shrirao AV, Mohale DS, Kochar NI, Chandewar AV. The pharmacological potential of Anethum graveolens: a review of therapeutic applications. International Journal of Advanced Research in Science, Communication and Technology. 2025; 5(5):366-372.DOI: 10.48175/IJARSCT-26651.
Alizadeh Behbahani B, Shahidi F, Yazdi FT, Mortazavi SA, Mohebbi M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int J Biol Macromol. 2017;94(PtA):515-526.DOI: 10.1016/j.ijbiomac.2016.10.055.
Chahal KK, Kumar A, Bhardwaj U, Kaur R. Chemistry and biological activities of Anethum graveolens L.(dill) essential oil: a review. J Pharmacogn Phytochem. 2017;6(2):295-306.DOI: 10.22271/phyto.
Kaur V, Kaur R, Bhardwaj U. A review on dill essential oil and its chief compounds as natural biocide. Flavour Fragr J. 2021;36(3):412-431.DOI: 10.1002/ffj.3633.
Yousaf A, Shahid S. The study of Anethum graveolens L. (Dill) in the case of diabetes mellitus (DM). Asian J Res Pharm Sci. 2020; 10(4):248-256.DOI: 10.5958/2231-5659.2020.00045.4.
Panda S. The effect of Anethum graveolens L. (dill) on corticosteroid induced diabetes mellitus: involvement of thyroid hormones. Phytother Res. 2008;22(12):1695-1697.DOI: 10.1002/ptr.2553.
Nastić N, Lončarić A, Simić S, Pastor K, Banožic M, Jokić S, et al. Anethum graveolens L. (dill) seed polyphenolic fractions: assessment of high-voltage electrical discharges, subcritical water, and microwave-assisted extraction systems. J Food Sci. 2025;90(2):e17664.DOI: 10.1111/1750-3841.17664.
Belew AA, Gebre SH. Comparative assessment of phenolic and flavonoid contents and antioxidant activities in methanol extracts of spices from Jigjiga market, Ethiopia. Pharmacol Res Nat Prod. 2025;6:100168.DOI: 10.1016/j.prenap.2025.100168.
Alamri AA, Alanazi NAH, Mashlawi AM, Shommo SAM, Akeel MA, Alhejely A, et al. Chemical composition of Anabasis articulata, and biological activity of greenly synthesized zinc oxide composite nanoparticles (Zn-NPs): antioxidant, anticancer, and larvicidal activities. Agronomy. 2024;14(8):1742,1-19.DOI: 10.3390/agronomy14081742.
Obadoni BO, Ochuko PO. Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta States of Nigeria. Global J Pure Appl Sci. 2002;8(2):203-2088.DOI: 10.4314/gjpas.v8i2.16033.
Nyero A, Anywar GU, Achaye I, Malinga GM. Phytochemical composition and antioxidant activities of some wild edible plants locally consumed by rural communities in northern Uganda. Front Nutr. 2023;10:1070031,1-10.DOI: 10.3389/fnut.2023.1070031.
Kitts DD, Wijewickreme AN, Hu C. Antioxidant properties of a North American ginseng extract. Mol Cell Biochem. 2000;203:(1-2):1-10.DOI: 10.1023/a:1007078414639.
El-Wakf AM, El-Habibi EM, Ali DA, Abd El-Ghany E, Elmougy R. Marjoram and sage oils protect against testicular apoptosis, suppressed Ki-67 expression and cell cycle arrest as a therapy for male infertility in the obese rats. J Food Biochem. 2020;44(1):e13080,1-11.DOI: 10.1111/jfbc.13080.
Irwin MR, Curay CM, Choi S, Kiyatkin EA. Basic physiological effects of ketamine-xylazine mixture as a general anesthetic preparation for rodent surgeries. Brain Res. 2023;1804:148251,1-12.DOI: 10.1016/j.brainres.2023.148251.
Tariq SM, Khan K, Sadiq MM, Pooja S, Suyog S, Devendra SK. Nigella Sativa’s effect on biochemical as well as anthropometric parameters in diabetic rats on high fat diet. Journal of Medical Sciences and Health. 2023;9(1):16-22.DOI: 10.46347/jmsh.v9i1.21.253.
Novelli ELB, Diniz YS, Galhardi CM, Ebaid GMX, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41(1): 111-119.DOI: 10.1258/002367707779399518.
Vargas MR, Del Rosario Ferreira M, Collins P, D’Alessandro ME. Astaxanthin obtained from freshwater crustaceans mitigates visceral adiposity by modulating adipose tissue lipogenesis and ameliorates dyslipidemia in high-sucrose diet fed rats. J Nutr Biochem. 2025;142:109924.DOI: 10.1016/j.jnutbio.2025.109924.
Rasouli M, Mokhtari H. Calculation of LDL-cholesterol vs. direct homogenous assay. J Clin Lab Anal. 2017;31(3):e22057,1-6.DOI: 10.1002/jcla.22057.
Marudamuthu AS, Pari L. Effect of pterostilbene on lipids and lipid profiles in streptozotocin-nicotinamide induced type 2 diabetes mellitus. J Appl Biomed. 2008;6(1):31-37.DOI: 10.32725/jab.2008.005.
El-Wakf AM, El-Sawi MR, El-Nigomy HM, El-Nashar EM, Al-Zahrani NS, Alqahtani NG, et al. Fennel seeds extract prevents fructose-induced cardiac dysfunction in a rat model of metabolic syndrome via targeting abdominal obesity, hyperuricemia and NF-κβ inflammatory pathway. Tissue Cell. 2024;88:102385.DOI: 10.1016/j.tice.2024.102385.
Attia SH, Saadawy SF, El-Mahroky SM, Nageeb MM. Alleviation of pulmonary fibrosis by the dual PPAR agonist saroglitazar and breast milk mesenchymal stem cells via modulating TGFß/SMAD pathway. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(8):5953-5974.DOI: 10.1007/s00210-024-03004-y.
Ivanova K, Manolova I, Ignatova MM, Gulubova M. Immunohistochemical expression of TGF-Β1, SMAD4, SMAD7, TGFβRII and CD68-Positive TAM densities in papillary thyroid cancer. Open Access Maced J Med Sci. 2018;6(3):435-441.DOI: 10.3889/oamjms.2018.105.
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021;184(10):2537-2564.DOI: 10.1016/j.cell.2021.04.015.
Ghosh A, Gao L, Thakur A, Siu PM, Lai CWK. Role of free fatty acids in endothelial dysfunction. J Biomed Sci. 2017;24(1):50,1-15.DOI: 10.1186/s12929-017-0357-5.
Dinda B, Dinda M, Roy A, Dinda S. Dietary plant flavonoids in prevention of obesity and diabetes. Adv Protein Chem Struct Biol. 2020;120:159-235.DOI: 10.1016/bs.apcsb.2019.08.006.
Mobasseri M, Ostadrahimi A, Jafarabadi MA, Mahluji S. Anethum graveolens supplementation improves insulin sensitivity and lipid abnormality in type 2 diabetic patients. Pharm Sci. 2014;20(2): 40-45.DOI: 10.18502/ccb.v2i1.5870.
Akhlaghi M. Non-alcoholic fatty liver disease: beneficial effects of flavonoids. Phytother Res. 2016;30(10):1559-1571.DOI: 10.1002/ptr.5667.
Sedik AA, Elgohary R, Khalifa E, Khalil WKB, I. Shafey HI, Shalaby MB, et al. Lauric acid attenuates hepato-metabolic complications and molecular alterations in high-fat diet-induced nonalcoholic fatty liver disease in rats. Toxicol Mech Methods. 2024;34(4):454-467.DOI: 10.1080/15376516.2023.2301344.
Lonardo A, Ballestri S, Guaraldi G, Nascimbeni F, Romagnoli D, Zona S, et al. Fatty liver is associated with an increased risk of diabetes and cardiovascular disease- evidence from three different disease models: NAFLD, HCV and HIV. World J Gastroenterol. 2016;22(44): 9674-9693.DOI: 10.3748/wjg.v22.i44.9674.
Matsuzaka T, Shimano H. Molecular mechanisms involved in hepatic steatosis and insulin resistance. J Diabetes Investig. 2011;2(3):170-175.
DOI: 10.1111/j.2040-1124.2011.00111.x.
Radhakrishnan S, Ke JY, Pellizzon MA. Targeted nutrient modifications in purified diets differentially affect nonalcoholic fatty liver disease and metabolic disease development in rodent models. Curr Dev Nutr. 2020;4(6):1-13.DOI: 10.1093/cdn/nzaa078.
Vadivelu B, Arumugam VA, Subbarayan S, Alshatwi AA, Krishnamoorthy R. Effect of Macrotyloma uniflorum on antiobesity in rats fed with a high fat diet. Saudi J Biol Sci. 2019;26(7):1772-1778.DOI: 10.1016/j.sjbs.2018.05.003.
Pengnet S, Sumarithum P, Phongnu N, Prommaouan S, Kantip N, Phoungpetchara I, et al. Naringin attenuates fructose-induced NAFLD progression in rats through reducing endogenous triglyceride synthesis and activating the Nrf2/HO-1 pathway. Front Pharmacol. 2022;13:1049818,1-14.DOI: 10.3389/fphar.2022.1049818.
Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS, et al. Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab. 2018;28(6):866-880.e15.DOI: 10.1016/j.cmet.2018.07.019.
Jensen-Urstad AP, Semenkovich CF. Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim Biophys Acta. 2012;1821(5):747-453.DOI: 10.1016/j.bbalip.2011.09.017.
Hodson L, Gunn PJ. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol. 2019;15(12):689-700.DOI: 10.1038/s41574-019-0256-9.
Wu SJ, Huang WC, Yu MC, Chen YL, Shen SC, Yeh KW, et al. Tomatidine ameliorates obesity-induced nonalcoholic fatty liver disease in mice. J Nutr Biochem .2021;91: 108602.DOI: 10.1016/j.jnutbio.2021.108602.
Ouyang S, Zhuo S, Yang M, Zhu T, Yu S, Li Y, et al. Glycerol kinase drives hepatic de novo lipogenesis and triglyceride synthesis in nonalcoholic fatty liver by activating SREBP‐1c transcription, upregulating DGAT1/2 expression, and promoting glycerol metabolism. Adv Sci (Weinh). 2024;11(46):e2401311,1-18.DOI: 10.1002/advs.202401311.
Cao S, Liu M, Han Y, Li S, Zhu X, Li D, et al. Effects of saponins on lipid metabolism: the gut-liver axis plays a key role. Nutrients. 2024;16(10):1514,1-20.DOI: 10.3390/nu16101514.
La X, Zhang Z, Liang J, Li H, Pang Y, He X, et al. Isolation and purification of flavonoids from quinoa whole grain and its inhibitory effect on lipid accumulation in nonalcoholic fatty liver disease by inhibiting the expression of CD36 and FASN. J Sci Food Agric. 2025;105(2):1330-1342.DOI: 10.1002/jsfa.13923.
Harjumäki R, Pridgeon CS, Ingelman-Sundberg M. CYP2E1 in alcoholic and non-alcoholic liver injury. roles of ROS, reactive intermediates and lipid overload. Int J Mol Sci. 2021;22(15):8221,1-20.DOI: 10.3390/ijms22158221.
Wang K, Tan W, Liu X, Deng L, Huang L, Wang X, et al. New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed Pharmacother. 2021;137: 111326,1-9.DOI: 10.1016/j.biopha.2021.111326.
Jian T, Ding X, Wu Y, Ren B, Li W, Lv H, et al. Hepatoprotective effect of loquat leaf flavonoids in PM2.5-induced non-alcoholic fatty liver disease via regulation of IRs-1/Akt and CYP2E1/JNK pathways. Int J Mol Sci. 2018;19(10):3005,1-14. DOI: 10.3390/ijms19103005.
Chalasani N, Gorski JC, Asghar MS, Asghar A, Foresman B, Hall SD, et al. Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology. 2003;37(3):544-450.DOI: 10.1053/jhep.2003.50095.
Mercurio G, Giacco A, Scopigno N, Vigliotti M, Goglia F, Cioffi F, et al. Mitochondria at the crossroads: linking the Mediterranean diet to metabolic health and non-pharmacological approaches to NAFLD. Nutrients. 2025;17(7):1214,1-38.DOI: 10.3390/nu17071214.
Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;2018:9547613,1-14.DOI: 10.1155/2018/9547613.
Nili-Ahmadabadi A, Torabi K, Mohammadi M, Heshmati A. Thermally oxidized sunflower oil diet alters leptin/ghrelin balance and lipid profile in rats: possible role of reactive aldehydes in dyslipidemia. J Food Biochem. 2022;46(12):e14514.DOI: 10.1111/jfbc.14514.
Zhang S, Zheng L, Dong D, Xu L, Yin L, Qi Y, et al. Effects of flavonoids from Rosa laevigata Michx fruit against high-fat diet-induced non-alcoholic fatty liver disease in rats. Food Chem. 2013;141(3):2108-2116.DOI: 10.1016/j.foodchem.2013.05.019.
Sarkar S, Ghosh S, Biswas M. Naringin ameliorates high-fat diet-induced hepatotoxicity and dyslipidemia in experimental rat model via modulation of anti-oxidant enzymes, AMPK and SERBP-1c signaling pathways. Toxicol Rep. 2025;14:102062,1-13.DOI: 10.1016/j.toxrep.2025.102062.
Li P, He K, Li J, Liu Z, Gong J. The role of Kupffer cells in hepatic diseases. Mol Immunol. 2017;85:222-229.DOI: 10.1016/j.molimm.2017.02.018.
Myint M, Oppedisano F, De Giorgi V, Kim BM, Marincola FM, Alter HJ, et al. Inflammatory signaling in NASH driven by hepatocyte mitochondrial dysfunctions. J Transl Med. 2023;21(1):757,1-16.DOI: 10.1186/s12967-023-04627-0.
Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D, et al. Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res. 2010;15 Suppl 2(Suppl 2):120-122.
DOI: 10.1186/2047-783x-15-s2-120.
Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:139239,1-12.DOI: 10.1155/2013/139239.
Moradkhani S, Rezaei-Dehghanzadeh T, Nili-Ahmadabadi A. Rosa persica hydroalcoholic extract improves cadmium-hepatotoxicity by modulating oxidative damage and tumor necrosis factor-alpha status. Environ Sci Pollut Res Int. 2020;27(25):31259-31268.DOI: 10.1007/s11356-020-09450-4.
Zhao W, Yan Y, Xiao Z, Wang M, Xu M, Wang Z, et al. Bicyclol ameliorates nonalcoholic fatty liver disease in mice via inhibiting MAPKs and NF-κB signaling pathways. Biomed Pharmacother. 2021;141:111874,1-12.DOI: 10.1016/j.biopha.2021.111874.
Carpino G, Del Ben M, Pastori D, Carnevale R, Baratta F, Overi D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 2020;72(2):470-485.DOI: 10.1002/hep.31056.
Hassan NF, Soliman GM, Okasha EF, Shalaby AM. Histological, immunohistochemical, and biochemical study of experimentally induced fatty liver in adult male albino rat and the possible protective role of pomegranate. J Microsc Ultrastruct. 2018;6(1):44-55.DOI: 10.4103/JMAU.JMAU_5_18.
Zhao J, Zheng H, Liu Y, Lin J, Zhong X, Xu W, et al. Anti-inflammatory effects of total alkaloids from Rubus alceifolius Poir [corrected]. on non-alcoholic fatty liver disease through regulation of the NF-κB pathway. Int J Mol Med. 2013;31(4):931-937.DOI: 10.3892/ijmm.2013.1281.
Xiao P, Ye Z, Li X, Feng Q, Su Y. Ginseng and its functional components in non-alcoholic fatty liver disease: therapeutic effects and multi-target pharmacological mechanisms. Front Pharmacol. 2025;16:1540255,1-20.DOI: 10.3389/fphar.2025.1540255.
Ramani K, Mavila N, Abeynayake A, Tomasi ML, Wang J, Matsuda M, et al. Targeting A-kinase anchoring protein 12 phosphorylation in hepatic stellate cells regulates liver injury and fibrosis in mouse models. Elife. 2022;11:e78430,1-30.DOI: 10.7554/eLife.78430.
Khurana A, Sayed N, Allawadhi P, Weiskirchen R. It's all about the spaces between cells: role of extracellular matrix in liver fibrosis. Ann Transl Med. 2021;9(8):728,1-13.DOI: 10.21037/atm-20-2948.
Zhang B, Lai L, Tan Y, Liang Q, Bai F, Mai W, et al. Hepatoprotective effect of total flavonoids of Mallotus apelta (Lour.) Muell.Arg. leaf against carbon tetrachloride-induced liver fibrosis in rats via modulation of TGF-β1/Smad and NF-κB signaling pathways. J Ethnopharmacol. 2020;254:112714,1-12.DOI: 10.1016/j.jep.2020.112714.
Zhu W, Cui Y, Qiu J, Zhang X, Gao Y, Shang Z, et al. Exploring the therapeutic potential of TGF-β inhibitors for liver fibrosis: targeting multiple signaling pathways. J Clin Transl Hepatol. 2025;13(7):588-598.DOI: 10.14218/JCTH.2025.00029.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.
...


