Development of a novel ultrashort antimicrobial peptide-levofloxacin conjugate with enhanced synergistic activity against multidrug and levofloxacin-resistant bacterial isolates

Ammar Almaaytah , Aseel Alrashdan, Salsabeel H Sabi

Abstract


Background and purpose: Antimicrobial resistance poses a significant global health threat. A previously developed penta-amino acid ultrashort antimicrobial peptide (UP5), with alternating arginine and biphenylalanine units, showed strong antimicrobial activity, particularly in combination with levofloxacin. However, differences in pharmacokinetics between UP5 and levofloxacin may hinder their optimal clinical use. This study aimed to develop a covalent UP5-levofloxacin conjugate that retains the synergistic antimicrobial properties of both UP5 and levofloxacin.

Experimental approach: The UP5-levofloxacin conjugate was synthesized and tested for antimicrobial activity against multidrug-resistant gram-positive (Enterococcus faecium, Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa). Hemolytic activity was assessed on human erythrocytes, and selectivity against MDCK cells was determined. Comparative analysis was performed with individual components.

Findings/Results: The conjugate exhibited synergistic antimicrobial activity with minimum inhibitory concentration (MIC) values between 2.5 and 20 µM, overcoming levofloxacin resistance. It showed minimal hemolytic activity < 1% and a favorable selectivity index of 4.4-35.2. Cytotoxicity studies indicated selective toxicity towards MDCK cells, with an IC50 of 88.34 µM, significantly higher than its MIC values.

Conclusion and implications: The UP5-levofloxacin conjugate demonstrated enhanced antimicrobial efficacy against resistant bacteria, with minimal hemolytic activity and favorable selectivity toward normal cells. This conjugate presents a promising approach to combating antimicrobial resistance, offering potential for improved therapeutic strategies.

 


Keywords


Antimicrobial peptide; Antimicrobial resistance; Conjugation; Drug design; Levofloxacin; Synergism.

Full Text:

PDF

References


Van Duin D, Paterson D. Multidrug resistant bacteria in the community:trends and lessons learned. Infect Dis Clin North Am. 2016;30(2):377-390.DOI: 10.1016/j.idc.2016.02.004.

Majumder MA, Rahman S, Cohall D, Bharatha A, Singh K, Haque M, et al. Antimicrobial stewardship:fighting antimicrobial resistance and protecting global public health. Infect Drug Resist. 2020;13:4713-4738.DOI: 10.2147/IDR.S290835.

Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant gram-negative bacteria: a systematic review of current epidemiology, prognosis, and treatment options. J Antimicrob Chemother. 2020;75(2):271-282.DOI: 10.1093/jac/dkz401.

Chandra P, Mk U, Ke V, Mukhopadhyay C, Acharya DU, Rajesh V. Antimicrobial resistance and the post-antibiotic era:better late than never effort. Expert Opin Drug Saf. 2021;20(11):1375-1390.DOI: 10.1080/14740338.2021.1928633.

Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating antibiotic-resistant bacteria:exploring alternative therapies for a post-antibiotic era. Int J Mol Sci. 2020;21(3):1061, 1-18.DOI: 10.3390/ijms21031061.

Overton K, Fortané N, Broom A, Raymond S, Gradmann C, Orubu ESF, et al. Waves of attention:patterns and themes of international antimicrobial resistance reports, 1945–2020. BMJ Glob Health. 2021;6(11):e006909,1-12.DOI: 10.1136/bmjgh-2021-006909.

Savadogo M, Dahourou LD, Ilboudo AK, Ilboudo SG, Zangré H, Tarnagda G, et al. The rabies free burkina faso initiative:an example of how one health-oriented civil society organizations can contribute towards the achievement of the rabies zero by 30 goal. One Health Outlook. 2023;5(1):9,1-11.DOI: 10.1186/s42522-023-00086-1.

Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents. Clin Microbiol Infect. 2020;26(5):596-603.DOI: 10.1016/j.cmi.2019.09.015.

Nwobodo DC, Ugwu MC, Anie CO, Al-Ouqaili MTS, Ikem JC, Chigozie UV, et al. Antibiotic resistance:the challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022;36(9):e24655,1-10.DOI: 10.1002/jcla.24655.

Sulis G, Adam P, Nafade V, Gore G, Daniels B, Daftary A, et al. Antibiotic prescription practices in primary care in low- and middle-income countries:a systematic review and meta-analysis. PLoS Med. 2020;17(6):e1003139,1-20.DOI: 10.1371/journal.pmed.1003139.

Hwang S, Kwon KT. Core elements for successful implementation of antimicrobial stewardship programs. Infect Chemother. 2021;53(3):421-435.DOI: 10.3947/ic.2021.0093.

Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021;5(10):726-749.DOI: 10.1038/s41570-021-00313-1

Tarín-Pelló A, Suay-García B, Pérez-Gracia MT. Antibiotic-resistant bacteria:current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther. 2022;20(8):1095-1108.DOI: 10.1080/14787210.2022.2078308.

Annunziato G, Costantino G. Antimicrobial peptides (AMPs):a patent review (2015–2020). Expert Opin Ther Pat. 2020;30(12):931-947.DOI: 10.1080/13543776.2020.1851679.

Büyükkiraz ME, Kesmen Z. Antimicrobial peptides (AMPs):a promising class of antimicrobial compounds. J Appl Microbiol. 2022;132(3):1573-1596.DOI: 10.1111/jam.15314.

Almaaytah A. Antimicrobial peptides as potential therapeutics: advantages, challenges, and recent advances. Farmacia. 2022;70(6):991-1003.DOI: 10.31925/farmacia.2022.6.1

Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides:key components of the innate immune system. Crit Rev Biotechnol. 2012;32(2):143-171.DOI: 10.3109/07388551.2011.594423.

Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M, et al. Antimicrobial peptides:features, action, and their resistance mechanisms in bacteria. Microb Drug Resist. 2018;24(6):747-767.DOI: 10.1089/mdr.2017.0392.

Sarkar T, Chetia M, Chatterjee S. Antimicrobial peptides and proteins: from nature’s reservoir to the laboratory and beyond. Front Chem. 2021;9:691532,1-40.DOI: 10.3389/fchem.2021.691532.

León-Buitimea A, Garza-Cárdenas CR, Garza-Cervantes JA, Lerma-Escalera JA, Morones-Ramírez JR. The demand for new antibiotics:antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front Microbiol. 2020;11:551136,1-10.DOI: 10.3389/fmicb.2020.01669.

Almaaytah A, Qaoud MT, Abualhaijaa A, Al-Balas Q, Alzoubi KH. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect Drug Resist. 2018;11:835-847.DOI: 10.2147/IDR.S166236.

Costa F, Teixeira C, Gomes P, Martins MC. Clinical application of AMPs. Adv Exp Med Biol. 2019;1117:281-298.DOI: 10.1007/978-981-13-3588-4_15.

Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides towards clinical application: delivery and formulation. Adv Drug Deliv Rev. 2021;175:113818,1-56.DOI: 10.1016/j.addr.2021.05.028.

Luong HX, Thanh TT, Tran TH. Antimicrobial peptides–advances in the development of therapeutic applications. Life Sci. 2020;260:118407,1-15.DOI: 10.1016/j.lfs.2020.118407.

Yamauchi R, Kawano K, Yamaoka Y, Taniguchi A, Yano Y, Takasu K, et al. Development of antimicrobial peptide–antibiotic conjugates to improve the outer membrane permeability of antibiotics against Gram-negative bacteria. ACS Infect Dis. 2022;8(11):2339-2347.DOI: 10.1021/acsinfecdis.2c00406.

Almaaytah A, Qaoud MT, Mohammed GK, Abualhaijaa A, Knappe D, Hoffmann R, et al. Antimicrobial and antibiofilm activity of UP5, an ultrashort antimicrobial peptide designed using only arginine and biphenylalanine. Pharmaceuticals. 2018;11(1):3,1-18.DOI: 10.3390/ph11010003.

Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Dev Ther. 2017;11:3159-3170.DOI: 10.2147/DDDT.S147450.

Rand KH, Houck HJ, Brown P, Bennett D. Reproducibility of the microdilution checkerboard method for antibiotic synergy. Antimicrob Agents Chemother. 1993; 37(3):613-615.DOI: 10.1128/AAC.37.3.613

Hall MJ, Middleton RF, Westmacott D. The fractional inhibitory concentration (FIC) index as a measure of synergy. J Antimicrob Chemother. 1983;11(5):427-433.DOI: 10.1093/jac/11.5.427.

Almaaytah A, Ajingi Y, Abualhaijaa A, Tarazi S, Alshar’i N, Al-Balas Q. Peptide consensus sequence determination for the enhancement of the antimicrobial activity and selectivity of antimicrobial peptides. Infect Drug Resist. 2016;10:1-17.DOI: 10.2147/IDR.S118877.

Ptaszyńska N, Gucwa K, Olkiewicz K, Heldt M, Serocki M, Stupak A, et al. Conjugates of ciprofloxacin and levofloxacin with cell-penetrating peptide exhibit antifungal activity and mammalian cytotoxicity. Int J Mol Sci. 2020;21(13):4696,1-25.DOI: 10.3390/ijms21134696.

Mhlongo JT, Waddad AY, Albericio F, de la Torre BG. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. Adv Sci. 2023;10(26):e2300472,1-27.DOI: 10.1002/advs.202300472.

Ghaffar KA, Hussein WM, Khalil ZG, Capon RJ, Skwarczynski M, Toth I. Levofloxacin and indolicidin for combination antimicrobial therapy. Curr Drug Deliv. 2015;12(1):108-114.DOI: 10.2174/1567201811666140910094050.

Sajid MI, Lohan S, Kato S, Tiwari RK. Combination of amphiphilic cyclic peptide [R4W4] and levofloxacin against multidrug-resistant bacteria. Antibiotics. 2022;11(3):416.DOI: 10.3390/antibiotics11030416.

Riahifard N, Tavakoli K, Yamaki J, Parang K, Tiwari R. Synthesis and evaluation of antimicrobial activity of [R4W4K]-levofloxacin and [R4W4K]-levofloxacin-Q conjugates. Molecules. 2017;22(6):957,1-11.DOI: 10.3390/molecules22060957.

Darwish R, Almaaytah A, Salama A. The design and evaluation of the antimicrobial activity of a novel conjugated penta-ultrashort antimicrobial peptide in combination with conventional antibiotics against sensitive and resistant strains of S. aureus and E. coli. Res Pharm Sci. 2022;17(6):612-620.DOI: 10.4103/1735-5362.359429.

Berry L, Domalaon R, Brizuela M, Zhanel GG, Schweizer F. Polybasic peptide–levofloxacin conjugates potentiate fluoroquinolones and other classes of antibiotics against multidrug-resistant gram-negative bacteria. MedChemComm. 2019;10(4):517-527.DOI: 10.1039/c9md00051h.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.