The beneficial effect of gamma aminobutyric acid on diabetic nephropathy in type 2 diabetic rat model and their offspring

Hossein Rezazadeh , Sajad Maghareh-Dehkordi, Mohammad Vahid Touliat, Ardeshir Talebi, Nepton Soltani

Abstract


Background and purpose: Diabetic nephropathy (DN) in the first and second generations of diabetic rats and improving kidney function by gamma aminobutyric acid (GABA) were investigated.

Experimental approach: Male and female rats and their offspring were used. Diabetes was induced by a high-fat diet and a low dose of streptozotocin. Animals were divided into the diabetic positive control (D) group, the diabetic group receiving insulin (D + insulin), and the diabetic group receiving GABA (D + GABA). In addition, two groups of non-diabetic parents were assigned as negative control (NDC) groups. Each animal was monitored for 16 weeks, and offspring were fed with normal diet. The blood glucose level, urine volume, and water intake, as well as renal function, including the serum levels of blood urea nitrogen (BUN), creatinine (Cr), and glomerular filtration rate (GFR) were assessed. Also, the hyperinsulinemic-euglycemic clamp and gene expressions of Nox4 and Icam1 in the kidneys were measured for all subjects.

Findings/Results: GABA administration in parents and offspring decreased blood glucose level, insulin resistance, GFR, serum levels of BUN and Cr compared to the D groups. GABA reduced the urine Cr, BUN, and albumin loads in both parents and offspring in comparison to the D groups. GABA decreased Nox4 and Icam1 gene expression in both parents and offspring.

Conclusion and implications: GABA decreased the risk of DN, hyperglycemia, and insulin resistance in both diabetic parents and their offspring by improving kidney function, highlighting the potential therapeutic benefits of GABA in managing type 2 diabetes complications.

 

 


Keywords


Diabetes; GABA; Hyperinsulinemic-euglycemic clamp; Insulin resistance; Kidney function; Nephropathy.

Full Text:

PDF

References


Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275,1-34.DOI: 10.3390/ijms21176275.

Amirsadri M, Torkpour E. Cost-effectiveness and cost-utility analysis of type-2 diabetes screening in pharmacies in Iran. Res Pharm Sci. 2023;18(2):210-218.DOI: 10.4103/1735-5362.367799.

Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436-2443.DOI: 10.1093/eurheartj/eht149.

Rustaei Rad N, Movahedian A, Feizi A, Aminorroaya A, Aarabi MH. Antioxidant effects of astaxanthin and metformin combined therapy in type 2 diabetes mellitus patients: a randomized double-blind controlled clinical trial. Res Pharm Sci. 2022;17(2):219-230.DOI: 10.4103/1735-5362.335179.

Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020;22(S1):3-15.DOI: 10.1111/dom.14007.

Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, et al. Non-coding RNAs as biomarkers and therapeutic targets for diabetic kidney disease. Front Pharmacol. 2021;11,1-15.DOI: 10.3389/fphar.2020.583528.

Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45-63.PMID: 31333808.

Miranda-Daz AG, Pazarn-Villaseor L, Yanowsky-Escatell FG, Andrade-Sierra J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J Diabetes Res. 2016;2016:1-7.DOI: 10.1155/2016/7047238.

Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal. 2016;25(12):657-684.DOI: 10.1089/ars.2016.6664.

Wang Z, Zhang J, Wang L, Li W, Chen L, Li J, et al. Glycine mitigates renal oxidative stress by suppressing Nox4 expression in rats with streptozotocin-induced diabetes. J Pharmacol Sci. 2018;137(4):387-394.DOI: 10.1016/j.jphs.2018.08.005.

Uwaezuoke SN. The role of adhesion molecules in nephropathies: the diagnostic applications. Integr Mol Med. 2019;6(2):1-5.DOI: 10.15761/IMM.1000359.

Elmarakby AA, Abdelsayed Ra. Inflammatory cytokines as predictive markers for early detection and progression of diabetic nephropathy. EPMA J. 2010;1(1):117-129.DOI: 10.1007/s13167-010-0004-7.

Liu L, He D, Fang L, Yan X. Association between E469K polymorphism in the ICAM1 gene and the risk of diabetic nephropathy: a meta-analysis. Lipids Health Dis. 2018;17(1):293,1-9.DOI: 10.1186/s12944-018-0922-2.

Kim G, Chung MK, Pae EK. Insulin secretion by beta-cell-like cells derived from pulp stem cells depends on augmented cytosolic zinc levels than GABA levels. Applied Sciences. 2020;10(21):7476,1-10.DOI: 10.3390/app10217476.

Cao XX, Yang JK, Wang L. Association between intercellular adhesion molecule 1 (ICAM1) polymorphisms and diabetic foot susceptibility: a case-control study. Medicine. 2020;99(11):e18052,1-6.DOI: 10.1097/MD.0000000000018052.

Gu HF, Ma J, Gu KT, Brismar K. Association of intercellular adhesion molecule 1 (ICAM1) with diabetes and diabetic nephropathy. Front endocrinol. 2013;3:179,1-7.DOI: 10.3389/fendo.2012.00179.

Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci. 2011;108(28):11692-11697.DOI: 10.1073/pnas.1102715108.

Kamran M, Bahrami A, Soltani N, Keshavarz M, Farsi L. GABA-induced vasorelaxation mediated by nitric oxide and GABAA receptor in non diabetic and streptozotocin-induced diabetic rat vessels. Gen Physiol Biophys. 2013;32(01):101-106.DOI: 10.4149/gpb_2013013.

Kharazmi F, Soltani N, Rezaei S, Keshavarz M, Farsi L. Role of GABAB receptor and L-Arg in GABA-induced vasorelaxation in non-diabetic and streptozotocin-induced diabetic rat vessels. Iran Biomed J. 2015;19(2):91-95.DOI: 10.6091/ibj.1461.2015.

Sasaki S, Yokozawa T, Cho EJ, Oowada S, Kim M. Protective role of gamma-aminobutyric acid against chronic renal failure in rats. J Pharm Pharmacol. 2010;58(11):1515-1525.DOI: 10.1211/jpp.58.11.0013.

Hata T, Rehman F, Hori T, Nguyen JH. GABA, aminobutyric acid, protects against severe liver injury. J Surg Res. 2018;236(3):172-183.DOI: 10.1016/j.jss.2018.11.047.

Rezazadeh H, Sharifi MR, Sharifi M, Soltani N. Gamma-aminobutyric acid attenuates insulin resistance in type 2 diabetic patients and reduces the risk of insulin resistance in their offspring. Biomed Pharmacother. 2021;138:111440,1-13.DOI: 10.1016/j.biopha.2021.111440.

Kahraman S, Dirice E, De Jesus DF, Hu J, Kulkarni RN. Maternal insulin resistance and transient hyperglycemia impact the metabolic and endocrine phenotypes of offspring. Am J Physiol-Endocrinol Metab. 2014;307(10):E906-E918.DOI: 10.1152/ajpendo.00210.2014.

Ryckman K, Spracklen C, Smith C, Robinson J, Saftlas A. Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta‐analysis. BJOG. 2015;122(5):643-651.DOI: 10.1111/1471-0528.13261.

Schaefer-Graf UM, Graf K, Kulbacka I, Kjos SL, Dudenhausen J, Vetter K, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008;31(9):1858-1863.DOI: 10.2337/dc08-0039.

Sohrabipour S, Sharifi MR, Talebi A, Sharifi M, Soltani N. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet. Eur J Pharmacol. 2018;826:75-84.DOI: 10.1016/j.ejphar.2018.01.047.

Oh SS, Narver HL. Mouse and rat anesthesia and analgesia. Curr Protoc. 2024;4(2):e995,1-43.DOI: 10.1002/cpz1.995.

Cuesta C, Fuentes-Calvo I, Sancho-Martinez SM, Valentijn FA, Düwel A, Hidalgo-Thomas OA, et al. Urinary KIM-1 correlates with the subclinical sequelae of tubular damage persisting after the apparent functional recovery from intrinsic acute kidney injury. Biomedicines. 2022;10(5):1106,1-14.DOI: 10.3390/biomedicines10051106.

Li M, Wang W, Xue J, Gu Y, Lin S. Meta-analysis of the clinical value of Astragalus membranaceus in diabetic nephropathy. J Ethnopharmacol. 2011;133(2):412-419.DOI: 10.1016/j.jep.2010.10.012.

Naderpoor N, Lyons JG, Mousa A, Ranasinha S, de Courten MPJ, Soldatos G, et al. Higher glomerular filtration rate is related to insulin resistance but not to obesity in a predominantly obese non-diabetic cohort. Sci Rep. 2017;7(1):45522,1-9.DOI: 10.1038/srep45522.

Kim YB, Kim WB, Jung WW, Jin X, Kim YS, Kim B, et al. Excitatory GABAergic action and increased vasopressin synthesis in hypothalamic magnocellular neurosecretory cells underlie the high plasma level of vasopressin in diabetic rats. Diabetes. 2018;67(3):486-495.DOI: 10.2337/db17-1042.

Zeng L, Yu Y, Cai X, Xie S, Chen J, Zhong L, et al. Differences in serum amino acid phenotypes among patients with diabetic nephropathy, hypertensive nephropathy, and chronic nephritis. Med Sci Monit. 2019;25:7235-7242.DOI: 10.12659/MSM.915735.

Hosseini Dastgerdi A, Sharifi M, Soltani N. GABA administration improves liver function and insulin resistance in offspring of type 2 diabetic rats. Sci Rep. 2021;11(1):1-27.DOI: 10.1038/s41598-021-02324-w.

Kanbay M, Ertuglu LA, Afsar B, Ozdogan E, Kucuksumer ZS, Ortiz A, et al. Renal hyperfiltration defined by high estimated glomerular filtration rate: a risk factor for cardiovascular disease and mortality. Diabetes, Obes Metab. 2019;21(11):2368-2383.DOI: 10.1111/dom.13831.

Lovshin JA, Škrtić M, Bjornstad P, Moineddin R, Daneman D, Dunger D, et al. Hyperfiltration, urinary albumin excretion, and ambulatory blood pressure in adolescents with type 1 diabetes mellitus. Am J Physiol Renal Physiol. 2018;314(4):F667-F674.DOI: 10.1152/ajprenal.00400.2017.

Chen Y, Liu P, Chen X, Li Y, Zhang F, Wang Y. Effects of different doses of Irbesartan combined with spironolactone on urinary albumin excretion rate in elderly patients with early type 2 diabetic nephropathy. Am J Med Sci. 2018;355(5): 418-424.DOI: 10.1016/j.amjms.2018.01.017.

Takano K, Yatabe MS, Abe A, Suzuki Y, Sanada H, Watanabe T, et al. Characteristic expressions of GABA receptors and GABA producing/transporting molecules in rat kidney. PLoS ONE. 2014;9(9):e105835,1-12.DOI: 10.1371/journal.pone.0105835.

Lee YM, Choi JH, Min WK, Han JK, Oh JW. Induction of functional erythropoietin and erythropoietin receptor gene expression by gamma-aminobutyric acid and piperine in kidney epithelial cells. Life Sci. 2018;215:207-215.DOI: 10.1016/j.lfs.2018.11.024.

Kobuchi S, Tanaka R, Shintani T, Suzuki R, Tsutsui H, Ohkita M, et al. Mechanisms underlying the renoprotective effect of GABA against ischemia/reperfusion-induced renal injury in rats. J Pharmacol Exp Ther. 2011;338(3):767-774.DOI: 10.1124/jpet.111.180174.

Huang HY, Hsu T, Lin BF. Gamma-aminobutyric acid decreases macrophages infiltration and suppresses inflammatory responses in renal injury. J Func Foods. 2019;60:103419,1-10.DOI: 10.1016/j.jff.2019.103419.

Kim HY, Yokozawa T, Nakagawa T, Sasaki S. Protective effect of gamma-aminobutyric acid against glycerol-induced acute renal failure in rats. Food Chem Toxicol. 2004;42(12):2009-2014.DOI: 10.1016/j.fct.2004.06.021.

Chen CH, Chen CY, Yu MC, Fu JF, Hou YC, Wang IK, et al. Impact of kidney size on mortality in diabetic patients receiving peritoneal dialysis. Sci Rep. 2021;11(1):8203,1-9.DOI: 10.1038/s41598-021-87684-z.

Rigalleau V, Garcia M, Lasseur C, Laurent F, Montaudon M, Raffaitin C, et al. Large kidneys predict poor renal outcome in subjects with diabetes and chronic kidney disease. BMC Nephrol. 2010;11(1):3,1-8.DOI: 10.1186/1471-2369-11-3.

Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137-188.DOI: 10.1152/physrev.00045.2011.

Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA consensus conference. Diabetes Care. 2014;37(10):2864-2883.DOI: 10.2337/dc14-1296.

Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szyndralewiez C, et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol-Renal Physiol. 2010;299(6):F1348-F1358.DOI: 10.1152/ajprenal.00028.2010.

Gorin Y, Block K. Nox4 and diabetic nephropathy: with a friend like this, who needs enemies? Free Radic Biol Med. 2013;61:130-142.DOI: 10.1016/j.freeradbiomed.2013.03.014.

Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase Nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol. 2014;25(6):1237-1254.DOI: 10.1681/ASN.2013070810.

Mead EL, Mosley A, Eaton S, Dobson L, Heales SJ, Pocock JM. Microglial neurotransmitter receptors trigger superoxide production in microglia; consequences for microglial-neuronal interactions. J Neurochem. 2012;121(2):287-301.DOI: 10.1111/j.1471-4159.2012.07659.x.

Gao L, Zhao H, Zhu T, Liu Y, Hu L, Liu Z, et al. The regulatory effects of lateral hypothalamus area GABAB receptor on gastric ischemia-reperfusion injury in rats. Front Physiol. 2017;8:722,1-10.DOI: 10.3389/fphys.2017.00722.

Siddiqui K, George TP, Nawaz SS, Joy SS. VCAM-1, ICAM-1 and selectins in gestational diabetes mellitus and the risk for vascular disorders. Future Cardiol. 2019;15(5):339-346.DOI: 10.2217/fca-2018-0042.

Zhang X, Seman NA, Falhammar H, Brismar K, Gu HF. Genetic and biological effects of ICAM-1 E469K polymorphism in diabetic kidney disease. J Diabetes Res. 2020;2020:1-7.DOI: 10.1155/2020/8305460.

Son M, Oh S, Lee HS, Choi J, Lee BJ, Park JH, et al. Gamma-aminobutyric acid-salt attenuated high cholesterol/high salt diet induced hypertension in mice. Korean J Physiol Pharmacol. 2021;25(1):27-38.DOI: 10.4196/kjpp.2021.25.1.27.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.